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Abstract:  For the past three decades, Latin Squares techniques have been widely used in 
many statistical applications. Much effort has been devoted to Latin Square Design. In 
this paper, I introduce the mathematical properties of Latin squares and the application of 
Latin squares in experimental design. Some examples and SAS codes are provided that 
illustrates these methods. 
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1. Introduction  
 

1.1 Latin square 
A Latin square is an table filled with n different symbols in such a way that each 

symbol occurs exactly once in each row and exactly once in each column. Here are two 

examples. 

nn×
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⎦

⎤

⎢
⎢
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⎣

⎡

213
132
321

  

⎥
⎥
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⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

bcad
abdc
dacb
cdba

1.2 Orthogonal array representation 
If each entry of an  Latin square is written as a triple (r,c,s), where r is the row, c 

is the column, and s is the symbol, we obtain a set of triples called the 

nn×
2n orthogonal 

array representation of the square. For example, the orthogonal array representation of the 

first Latin square displayed above is 

{ (1,1,1),(1,2,2),(1,3,3),(2,1,2),(2,2,3),(2,3,1),(3,1,3),(3,2,1),(3,3,2) }, 

where for example the triple (2,3,1) means that in row 2, column 3 there is the symbol 1. 

The definition of a Latin square can be written in terms of orthogonal arrays as follows: 

• There are  triples of the form (r,c,s),  where 1 ≤ r, c, s ≤ n.  2n

• All of the pairs (r,c) are different, all the pairs (r,s) are different, and all the 

pairs (c,s) are different.  

The orthogonal array representation shows that rows, columns and symbols play 

rather similar roles, as will be made clear below. 

1.3 Equivalence classes of Latin squares 
Many operations on a Latin square produce another Latin square (for example, 

turning it upside down). 

If we permute the rows, permute the columns, and permute the names of the symbols 

of a Latin square, we obtain a new Latin square said to be isotopic to the first. Isotopism 

is an equivalence relation, so the set of all Latin squares is divided into subsets, called 
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isotopy classes, such that two squares in the same class are isotopic and two squares in 

different classes are not isotopic. 

Another type of operation is easiest to explain using the orthogonal array 

representation of the Latin square. If we systematically and consistently reorder the three 

items in each triple, another orthogonal array (and, thus, another Latin square) is obtained. 

For example, we can replace each triple (r,c,s) by (c,r,s) which corresponds to 

transposing the square (reflecting about its main diagonal), or we could replace each 

triple (r,c,s) by (c,s,r), which is a more complicated operation. Altogether there are 6 

possibilities including “do nothing”, giving us 6 Latin squares called the conjugates (also 

parastrophes) of the original square. 

Although a Latin square is a simple object to a mathematician, it is multifaceted to an 

experimental designer. 
 

2. Latin Square Design 
 

2.1 Latin square design  
A Latin square design is a method of placing treatments so that they appear in a 

balanced fashion within a square block or field. Treatments appear once in each row and 

column. Replicates are also included in this design.  

• Treatments are assigned at random within rows and columns, with each treatment 

once per row and once per column.  

• There are equal numbers of rows, columns, and treatments.  

• Useful where the experimenter desires to control variation in two different 

directions  

The Latin square design, perhaps, represents the most popular alternative design 

when two (or more) blocking factors need to be controlled for. A Latin square design is 

actually an extreme example of an incomplete block design, with any combination of 

levels involving the two blocking factors assigned to one treatment only, rather than to all!   
 

2.2 Pros and cons of Latin square design 
 

The advantages of Latin square designs are:  
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• They handle the case when we have several nuisance factors and we either cannot 

combine them into a single factor or we wish to keep them separate.  

• They allow experiments with a relatively small number of runs.  

The disadvantages are:  

• The number of levels of each blocking variable must equal the number of levels 

of the treatment factor.  

• The Latin square model assumes that there are no interactions between the 

blocking variables or between the treatment variable and the blocking variable.  
 

2.3 An example of Latin square design 
 
Actually, in many cases, Latin squares are necessary because one such combination 

of levels from two blocking factors can be combined with one treatment, and not all. The 

following example taken from Mead et al. (2003) illustrates this: 
 
Example1: An experiment to investigate the effects of various dietary starch levels on 

milk production was conducted on four cows. The four diets, T1, T2, T3, and T4, (in 

order of increasing starch equivalent), were fed for three weeks to each cow and the total 

yield of milk in the third week of each period was recorded (i.e. third week to minimize 

carry-over effects due to the use of treatments administered in a previous period). That is, 

the trial lasted 12 weeks since each cow received each treatment, and each treatment 

required three weeks. The investigator felt strongly that time period effects might be 

important (i.e earlier periods in the experiment might influence milk yields differently 

compared to later periods). Hence, the investigator wanted to block on both cow and 

period. However, each cow cannot possibly receive more than one treatment during the 

same time period; that is, all possible cow-period blocking combinations could not 

logically be considered. 

To start the randomization for a Latin square that accommodates these types of 

concerns, let's choose at random from one of the 4 standard Latin squares when a = 4 

treatments  
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Table 2.1  A standard 44×  Latin square 

 Column 1 Column 2 Column 3 Column 4 

Row 1 A B C D 

Row 2 B A D C 

Row 3 C D B A 

Row 4 D C A B 
 

The two blocking variables in a Latin square design are often generically labeled as 

row and column blocking variables. In this example, cow is identified as the column 

variable and period as the row variable. Standard Latin squares are Latin squares in 

which elements of the first row and first column are arranged alphabetically by treatment 

category (i.e. the letters in the square above denote different treatments). There are a 

number of standard Latin squares that might exist for different values of a (i.e. total 

number of treatment effects). 

For each value of a, (the size of the square), there are a large number of different a by 

a squares that have the Latin square property that each letter (treatment group label) 

appears once in each row and once in each column. As with randomized block designs, in 

order to make the analysis of data from a design statistically valid, we must choose one 

design randomly from a larger set of possible Latin squares.  
 

2.4 Procedure to create a Latin square design
 

An appropriate randomization strategy is as follows: 

• Write down any Latin square of the required size (it could be a standard Latin 

square). 

• Randomize the order of the rows. 

• Randomize the order of the columns. 

• Randomize the allocation of treatments to the letters of the square. 

Consider Example 1, to randomize the order of the rows, choose in random order, the 

numbers (e.g., 1, 2, 3, 4) of the rows (you could use a computer to do this). Suppose in 

random order, one chooses 2, 4, 1, 3. Then one should rearrange the order of the rows as 

follows:  

 6

http://www.statease.com/rocket.html


Table 2.2  A  Latin square (rearrange the order of rows) 44×

 Column 1 Column 2 Column 3 Column 4 

Row 2 B A D C 

Row 4 D C A B 

Row 1 A B C D 

Row 3 C D B A 
 

Now let's randomize the order of the columns. Suppose the following order: 1, 4, 3, 2 

is chosen at random. Then one should rearrange the order of the columns as follows: 

 

Table 2.3  A 44×  Latin square 

(rearrange the order of rows and columns) 

 Column 1 Column 4 Column 3 Column 2 

Row 2 B C D A 

Row 4 D B A C 

Row 1 A D C B 

Row 3 C A B D 
 

Finally randomize treatments to the letters. Choosing at random, say T4, T1, T3, T2, 

in that order, one should assign, say A as Treatment T4, B as T1, C as T3 and D as T2. i.e. 

 

Table 2.4  A  Latin square (rearrange the order of rows and columns) 44×

(also randomize treatments to the letters) 

 Column 1 Column 4 Column 3 Column 2 

Row 2 T1 T3 T2 T4 

Row 4 T2 T1 T4 T3 

Row 1 T4 T2 T3 T1 

Row 3 T3 T4 T1 T2 
 

If write this in the context of the experiment in our example: 
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Table 2.5 The 44×  Latin square used in Example 1 

 Cow 1 Cow 4 Cow 3 Cow 2 

Period 2 T1 T3 T2 T4 

Period 4 T2 T1 T4 T3 

Period 1 T4 T2 T3 T1 

Period 3 T3 T4 T1 T2 
 

According to our randomization scheme, we should assign Treatment T4 to Cow 1 

during Period 1, followed by Treatment T1 during Period 2, etc. 
 

3. Analysis of variance 
 

3.1 Model for the classical Latin square design  
 

We write the model for the classical Latin square design as 

ijkkjiijk eY ++++= αδρμ  

Where , i = 1, ..., a, j = 1, ..., a, k = 1, ..., a, is the observation for the experimental unit 

in the ith row block level, jth column block level and the kth treatment effect.  

ijky

Upon choosing one Latin square arrangement at random and running his experiment 

accordingly, the investigator came up with the following data upon completion of the 

experiment. The data is given in parenthesis: 

 

Table 3.1 The 44×  Latin square used in Example 1  

together with data 

 Cow 1 Cow 2 Cow 3 Cow 4 

Period 1 T4 (192) T1 (195) T3 (292) T2 (249) 

Period 2 T1 (190) T4 (203) T2 (218) T3 (210) 

Period 3 T3 (214) T2 (139) T1 (245) T4 (163) 

Period 3 T2 (221) T3 (152) T4 (204) T1 (134) 
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3.2 Analysis of a Latin square 
 

The analysis of a Latin square is very easy, if there are no empty cells. The least 

squares means for the treatment effects can be shown to be simple averages as 

a

y

a

y
y

a

i
ijk

a

j
ijk

kk

∑∑
== === 11

....μ  

Note that either summation on the right side of the equation above is the same. For 

example, for Treatment T1, summing over levels of Periods: 

191
4

134245190195
1.. =

+++
=y  

or summing over levels of Cows: 

191
4

134245195190
1.. =

+++
=y  

Likewise, one can find the following treatment means for the other diets: 

206.75 2.. =y  5.1903.. =y   2174.. =y  

The factor SS are also easy to determine for a Latin square design (with no missing data): 

( )
2

1
.....∑

=

−=
a

i
i yyaSSROW  ( )

2

1
.....∑

=

−=
a

j
j yyaSSCOL  

( )
2

1
.....∑

=

−=
a

k
k yyaSSTR  

The generic ANOVA table is as follows: 

 

Table 3.2 The ANOVA table  

Source SS df MS 
Row SSROW a-1 MSROW 
Column SSCOL a-1 MSCOL 
Treatments SSTR a-1 MSTR 
Error SSE (a-1)(a-2) MSE 

 
 
The ANOVA table for our example is: 
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Table 3.3 The ANOVA table used in Example 1 
 

Source SS df MS F Pr > F 
Periods 6539.19 3 2179.7 1.76 0.2540 
Cows 9929.19 3 3309.7 2.68 0.1409 
Diets 1995.69 3 665.23 0.54 0.6736 
Error SSE 6 135.22   

 

Doing a Tukey's test on pairwise comparisons of the diets, one would come up with 

the following: 

T3   T2    T1   T4 
217.00  206.75   191.00  190.50

 

3.3 SAS program and output  
 
The SAS program and output might look as follows: 

 
data Latin; 
input per $ trt1 $ y1 trt2 $ y2 trt3 $ y3 trt4 $ y4; 
cards; 
Per1 T4 192 T1 195 T3 292 T2 249 
Per2 T1 190 T4 203 T2 218 T3 210 
Per3 T3 214 T2 139 T1 245 T4 163 
Per4 T2 221 T3 152 T4 204 T1 134 
; 
data setup(drop=trt1-trt4 y1-y4); 
set Latin; 
trt = trt1; y = y1; cow=1; output; 
trt = trt2; y = y2; cow=2; output; 
trt = trt3; y = y3; cow=3; output; 
trt = trt4; y = y4; cow=4; output; 
run; 
proc glm; 
class per trt cow; 
model y = per trt cow; 
means trt /tukey; 
run; 

 
                                    The GLM Procedure 
 
                                           Sum of 
   Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
   Model                        9     18464.06250      2051.56250       1.66    0.2770 
 
   Error                        6      7423.37500      1237.22917 
 
   Corrected Total             15     25887.43750 
 
   Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
   per                          3     6539.187500     2179.729167       1.76    0.2540 
   trt                          3     1995.687500      665.229167       0.54    0.6736 

 10



   cow                          3     9929.187500     3309.729167       2.68    0.1409 
 
   Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
   per                          3     6539.187500     2179.729167       1.76    0.2540 
   trt                          3     1995.687500      665.229167       0.54    0.6736 
   cow                          3     9929.187500     3309.729167       2.68    0.1409 
 

One could have accounted for alternative variance-covariance structures for the 

residuals over time within a subject, using the REPEATED option of PROC MIXED. 

Consider the following two options: 
 
proc mixed covtest; 
title 'Compound symmetry error structure'; 
class per trt cow; 
model y = per trt /ddfm=kr; 
repeated per / subject = cow type = cs; 
lsmeans trt /pdiff adjust=tukey; 
run; 
proc mixed covtest; 
title 'Autoregressive error structure'; 
class per trt cow; 
model y = per trt /ddfm=kr; 
repeated per / subject = cow type = ar(1); 
lsmeans trt /pdiff adjust=tukey; 
run;  
 

The output is as follows 
 

                                   The Mixed Procedure 
 
                                    Model Information 
 
                  Data Set                     WORK.SETUP 
                  Dependent Variable           y 
                  Covariance Structure         Compound Symmetry 
                  Subject Effect               cow 
                  Estimation Method            REML 
                  Residual Variance Method     Profile 
                  Fixed Effects SE Method      Prasad-Rao-Jeske- 
                                               Kackar-Harville 
                  Degrees of Freedom Method    Kenward-Roger 
 
 
                                           Dimensions 
 
                           Covariance Parameters             2 
                           Columns in X                      9 
                           Columns in Z                      0 
                           Subjects                          4 
                           Max Obs Per Subject               4 
 
 
 
                              Covariance Parameter Estimates 
 
                                                Standard         Z 
            Cov Parm     Subject    Estimate       Error     Value        Pr Z 
 
            CS           cow          518.13      698.80      0.74      0.4584 
            Residual                 1237.23      714.31      1.73      0.0416 
 
                                     Fit Statistics 
 
                          -2 Res Log Likelihood           100.9 
                          AIC (smaller is better)         104.9 
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                          AICC (smaller is better)        106.9 
                          BIC (smaller is better)         103.7 
 
                 
                              Type 3 Tests of Fixed Effects 
 
                                    Num     Den 
                      Effect         DF      DF    F Value    Pr > F 
 
                      per             3       6       1.76    0.2540 
                      trt             3       6       0.54    0.6736 
 
 
                                   Least Squares Means 
 
                                        Standard 
           Effect    trt    Estimate       Error      DF    t Value    Pr > |t| 
 
           trt       T1       191.00     20.9485    8.29       9.12      <.0001 
           trt       T2       206.75     20.9485    8.29       9.87      <.0001 
           trt       T3       217.00     20.9485    8.29      10.36      <.0001 
           trt       T4       190.50     20.9485    8.29       9.09      <.0001 
 
 
                            Differences of Least Squares Means 
 
                                Standard 
   Effect  trt  _trt  Estimate     Error    DF  t Value  Pr > |t|  Adjustment     Adj P 
 
   trt     T1   T2    -15.7500   24.8720     6    -0.63    0.5499  Tukey-Kramer  0.9176 
   trt     T1   T3    -26.0000   24.8720     6    -1.05    0.3361  Tukey-Kramer  0.7317 
 
 
                            Differences of Least Squares Means 
 
                                Standard 
   Effect  trt  _trt  Estimate     Error    DF  t Value  Pr > |t|  Adjustment     Adj P 
 
   trt     T1   T4      0.5000   24.8720     6     0.02    0.9846  Tukey-Kramer  1.0000 
   trt     T2   T3    -10.2500   24.8720     6    -0.41    0.6946  Tukey-Kramer  0.9744 
   trt     T2   T4     16.2500   24.8720     6     0.65    0.5377  Tukey-Kramer  0.9107 
   trt     T3   T4     26.5000   24.8720     6     1.07    0.3277  Tukey-Kramer  0.7210 
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                                   The Mixed Procedure 
 
                                    Model Information 
 
                  Data Set                     WORK.SETUP 
                  Dependent Variable           y 
                  Covariance Structure         Autoregressive 
                  Subject Effect               cow 
                  Estimation Method            REML 
                  Residual Variance Method     Profile 
                  Fixed Effects SE Method      Prasad-Rao-Jeske- 
                                               Kackar-Harville 
                  Degrees of Freedom Method    Kenward-Roger 
 
                              Covariance Parameter Estimates 
 
                                                Standard         Z 
            Cov Parm     Subject    Estimate       Error     Value        Pr Z 
 
            AR(1)        cow          0.4418      0.3795      1.16      0.2444 
            Residual                 1819.02      932.60      1.95      0.0256 
 
                                     Fit Statistics 
 
                          -2 Res Log Likelihood           100.8 
                          AIC (smaller is better)         104.8 
                          AICC (smaller is better)        106.8 
                          BIC (smaller is better)         103.6 
 
                              Type 3 Tests of Fixed Effects 
 
                                    Num     Den 
                      Effect         DF      DF    F Value    Pr > F 
 
                      per             3    4.68       0.95    0.4859 
                      trt             3    4.52       0.29    0.8316 
 
                                   Least Squares Means 
 
                                        Standard 
           Effect    trt    Estimate       Error      DF    t Value    Pr > |t| 
 
           trt       T1       193.85     21.2314    8.04       9.13      <.0001 
           trt       T2       197.86     21.2314    8.04       9.32      <.0001 
           trt       T3       216.40     21.2314    8.04      10.19      <.0001 
           trt       T4       197.14     21.2314    8.04       9.29      <.0001 
                            
                                Differences of Least Squares Means 
 
                                Standard 
   Effect  trt  _trt  Estimate     Error    DF  t Value  Pr > |t|  Adjustment     Adj P 
 
   trt     T1   T2     -4.0149   29.5204  6.06    -0.14    0.8962  Tukey-Kramer  0.9990 
   trt     T1   T3    -22.5546   29.5204  6.06    -0.76    0.4735  Tukey-Kramer  0.8672 
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4. Latin rectangles and multiple Latin squares 
 

Sometimes, one Latin square is not quite enough. In fact, it is often held that if 4≤a , 

and then more than one square should be considered in a design. On the other hand, 

when , a Latin square may be considered to be too large of an experiment. The 

unwritten rule seemingly implied here is that in the absence of any other knowledge, the 

error degrees of freedom should be anywhere between 10 and 40 in most designs. Let's 

consider the following example: 

8≥a

 

4.1 An example of Latin rectangle design 
 
An experiment was designed to determine the effects of three diets on liver 

cholesterol in rats (A=control, B=control + vegetable fat, C=control + animal fat). Body 

weight classifications (H, M or L) of the rats and the litters from which they came were 

used to form a balanced set of Latin squares. The litters were nested in squares (i.e. 

different litters were used in each square), whereas rows (weight classification) were not 

nested. The data is reported in the table below. 
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This design is sometimes labeled a Latin rectangle as the row identifications (e.g. 

weight class) are common to all squares but the column identification (e.g. litters) isn't 

(i.e. different litters in each square). One linear model for the Latin rectangle that has 

common row blocking criteria for s complete Latin squares and unique column blocking 

is: 

ijkkjiijk ey ++++= τγρμ  

is the fixed effect of the ith weight class (i = 1,2,3), jγwhere iρ is the random effect of 

the jth litter (j = 1,2,...,9) with jγ ~ NIID (0,  over all j, and 2
γσ ) kτ is the fixed effect of 

the kth treatment (k = 1,2,3).  

One can see that in the data design above, there exist at least two observations for 

each weight class by treatment (i.e. ik) combination. So the above model can be further 

extended to infer upon weight class by treatment interaction effects.  

 ijkikkjiijk ey +++++= ρττγρμ  

where ikρτ  is the interaction between the ith weight class and the kth treatment group. 
 

4.2 SAS program and output  

he SAS program and output might look as follows: 
 
T
 

pro  glm; c
class treat litter weight ; 
model chol = treat weight treat*weight litter; 
lsmeans treat /pdiff adjust=tukey; 
random litter; 
run  ;
pro  mixed; c
class treat litter weight ; 
model chol = treat weight treat*weight; 
lsmeans treat /pdiff adjust=tukey; 
random litter; 
run  ;

 

The resulting output is as follows: 
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5. Crossover designs: 
As with typical Latin square and some repeated measures studies, crossover studies 

describes those experiments with treatments administered in sequence to each 

experimental unit. A treatment is administered to a subject for a certain period of time, 

after which another treatment is administered to the same subject. The treatments are 

successively administered to the subject until it has received all treatments. The only 

difference between a crossover design and regular Latin square is that treatment sequence 

is actually considered to be one of the blocking factors in the study. Consider the 

following example: 
 

5.1 An example of crossover design 
 

Example2 (from Kuehl, 2000): Associative or synergistic effects occur in animal 

diets when feedstuffs are combined and diet utilization or animal performance is different

om that predicted from a sum of the individual ingredients. The addition of roughage to 

the diets of ruminant animals has been shown to influence various diet utilization factors 

such as ruminal retention time. However, information about the relative associative 

effects of different roughage was scarce, especially in mixed feedlot diets. 

The research hypothesis was that roughage source could influence utilization of 

mixed diets of beef steers by altering ruminal digestion of other diet ingredients. There 

were three treatments. All diets were based on 65% concentrate (steamflaked milo base) 

and 35% roughage. The three roughage treatments were: (A) 35% alfalfa hay (control) (B) 

17.5% wheat straw and 17.5% alfalfa (C) 17.5% cottonseed hulls and 17.5 % alfalfa. The 

experimental design was as follows: 12 beef steers were used in the study; each of three 

roughage diets were fed to the steers in one of 6 possible sequences of the three diets. 

Each diet in each sequence was fed to two steers for 30 days. The steers were allowed a 

period of 21 days (washout period) to adapt to a diet change before any data were 

collected. The Neutral Detergent Fiber (NDF) digestion coefficient calculated for each 

steer on each diet is shown below. The NDF digestion coefficient indicates the percent of 

dietary fiber digested by the steer: 

 

fr
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Table 5.1 Data and crossover design of Example 2 

 Sequence 

 1 2 3 4 5 6 

Steers  1 2  3 4  5 6  7 8  9 10  11 12

Period I A 50 55 B 44 51 C 35 41 A 54 58 B 50 55 C 41 46

Period II B 61 63 C 42 46 A 55 56 C 48 51 A 57 59 B 56 58

Period III C 53 57 A 57 59 B 47 50 B 51 54 C 51 55 A 58 61

 

Please note that blocking on steers in this way potentially increases the precision of 

eatment mean differences so the design is efficient in that sense. Now compare this 

ly considered. In fact, note above that this 

es

ted above, only applies to first-order carryover effects 

(i.e. effect of the treatment applied in the period immediately preceding the current 

tr

design to the Latin rectangle that was previous

d ign is a clear example of a Latin rectangle, except that the randomization is a little 

different. One should see that the above design is a balanced row-column design as far as 

treatments are considered; each treatment is considered 4 times in each period and twice 

within each sequence. However, this is not just any Latin rectangle. This is a design set 

up such that each treatment follows every other treatment an equal number of times...i.e. 

the design is balanced for assessment of carryover effects. 

To allow this, one can't have two different squares above that are randomized 

independently from each other. The data design above is a special case of a crossover 

study in which we have two steers considered within each sequence (a normal crossover 

study might consider just one subject within each sequence); i.e. as if we replicated the 

Latin rectangle twice. 

Generally, we might hope that carryover effects are not important but if they 

potentially are, we need to protect our inferences on treatment effects against them. That 

is, you should allow for the possibility that the physiological state of a subject may have 

been altered by one treatment sufficiently to have some effect on the responses in the 

succeeding treatment period. Sometimes a "washout period" between subsequent 

treatment administrations on the same experimental unit is helpful to mute carryover 

effects. Now the balance, as indica
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treatment), hopefull  there are some 

m re complicated designs that could assess ).  
 

od l of crossover design 

's t l  t c o  ig b :

i e

y, there are no higher order carryover effects (although

o  this as well

5.2 M
 

e

Let wri e the linear mode  for he ross ver des n a ove  

ijklklmlkijijkly +++++++= γα ρ τλτγμ )( , 

whereμ is the ove  rall mean, is th f  o e h u ee e fect f th  it  seq enc , )(i iiα jρ s r

of the th steer within the ith sequence (i.e. 

the andom effect 

j ),0(~ 2
)( ρσρ Nij , kγ  is the effect of the kth 

period, lτ is the effect of the lth treatment effect and mλ is the effect of the mth carryover 
effect with ijke being the NIID residual term (i.e. ijke  ~ N ),0( 2

eσ ).  
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