AD-A086 023 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/6 17/7
POSITION DETERMINATION WITH LORAN-C TRIPLETS AND THE HEWLETT-PA-EETC(U) mar 80 a h shudde
UNCLASSIFIED NPS55-80-010
NL

END

8-80
-

NPS55-80-010

NAVAL POSTGRADUATE SCHOOL Monterey, California

POSITION DETERMINATION WITH
 LORAN-C TRIPLETS AND THE HEWLETT-PACKARD HP-67/97 PROGRAMMABLE CALCULATORS

by
R. H. Shudde

March 1980

Approved for public release; distribution unlimited.
Prepared for:
Chief of Naval Research
Arlington, Virginia 22217

NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

Rear Admiral J. J. Ekelund
Jack R. Boasting Superintendent Provost

The work reported herein was supported by the office of Naval Research, Fleet Activity Support Division, Code 230 and the Commander, Patrol Wings Pacific as part of the Tactical Development and Evaluation Program.

Reproduction of all or part of this report is authorized.

Reviewed by:

MICHAEL G. SOVEREIGN, Chainman Department of Operations Research

This report was prepared by:

Released by:

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When DACO Entered)

16. DISTRIBUTION STATEMENT (of thea RepOrt)

Approved for public release; distribution unlimited.

17. DISTRIEUTION STATEMENT (of the abstract mitered In Block 20, $/ 1$ different from Report)

1. SUPPLEMENTAAY NOTES
2. KEY WOROS (Continue on rerepee aldo If neceecery end identify by block number)

Loran, Fixing, Programmable Calculator
Loran-C, Hyperbolic Fixing,
Navigation, Radio Positioning,
Position Determination, Calculator
20 ABSTRACT (Continue on reveres aldo If nececemy and Idonlltry by block member)
This report presents an algorithm and HP-67/97 programs for position determination with Loran-C chains. Operational data cards are prepared in advance for Loran-C triplets. Position determination is performed using a single program card and an appropriate operational data card.

DO , FORM 1473 EDITION OF 1 nov SB IS OBSOLETE S/N0102-014-6601.

UNCLASSIFIED
SECURITY CLABSIFICATION OF THIS PACE (widen DelE Entered)

by

R. H. Shudde

Naval Postgraduate School Monterey, California

March 1980

The programs in this report are for use within the Navy, and they are presented without representation or warranty of any kind.

CONTENTS

Page
A. Introduction 1
B. Program Description 4
C. HP-67/97 Calculator Programs 6

1. User Instructions 6
2. Sample Problem 9
3. Program Storage Allocations and Program Listings 12
D. Loran-C Fixing Algorithms 23
E. The Reverse (Inverse) Solution Algorithm 30
F. The Direct Solution Algorithm 32
G. Discussion and Some Typical Results 34
H. References 38
APPENDIX: Loran-C Station Parameters 39

ABSTRACT

This report presents an algorithm and HP-67/97 programs for position determination with Loran-C chains. Operational data cards are prepared in advance for Loran-C triplets. Position determination is performed using a single program card and an appropriate operational data card.

A. Introduction

The Loran system is a radio aid to navigation which utilizes the principle of hyperbolic fixing. The locus of points for which the difference in arrival time of synchronized signals from a pair of transmitters is constant determines a hyperbolic line of positions (LOP). The intersection of two hyperbolic lines of position from two pairs of transmitters determines position or a hyperbolic fix. That two pairs of stations are required for a fix does not necessarily mean that there are four separate stations, for one station of one pair may be colocated with one station of the other pair forming a Loran triplet (Figure 1). Triplets may be joined "end-to-end" by station colocation to form a Loran chain (Figure 2). Loran chains are common on both the East and West Coasts of the North American continent.

The early "Standard Loran" or Loran-A" operating at a frequency just below 2 MHz is still in use in the Pacific area. The present day "Loran-C" operates at $100-\mathrm{kHz}$ and is in use in both the Atlantic and Pacific Areas. The computational algorithm and programs described herein can be used for position determination with Loran-C triplets. Further information on the history, development and operation of the Loran systems may be found in References 1 and 2.

(a) Colocated Master Stations

(b) Colocated Slave Stations

(c) Colocated Master and Slave

Figure 1. Loran Triplets.
2

Figure 2. Loran Chain of Five Loran Triplets.

B. Program Description

One program card and one operational data card (described below) are all that is required for on-location position determination from Loran triplet time-difference measurements. Two program cards are required to prepare operational data cards; these operational data cards should be prepared and validated prior to on-location navigational use. Thus although three program cards are described only one program card is required for navigation; two program cards are used to prepare operational data cards during or prior to mission planning. The function of each program card and its intended use follows.

Program Card 1. This program card is used to prepare master data cards. A master data card requires the following information for a master (M) station/slave(S) station pair:

1. A M/S pair identification number.
2. The quantity Δt which is the sum of the coding delay plus the one way base line time in microseconds.
3. The latitude and longitude of the master station.
4. The latitude and longitude of the slave station.

Some preprocessing of these data is performed before the master data card is generated. The data generated require only one side of an HP-67/97 magnetic card for each M/S pair, thus a second M/S pair may be placed on side 2 of the card (thus conserving cards) if desired. It is envisaged that a master data card will be prepared in advance for each M / S pair that might be received within an area of operation.

Program Card 2. This program card is used to prepare an operational data card for every Loran triplet within an operational area. Each operational data card contains data merged from the master data cards which contain M / S pair information for each pair of the triplet. These merged data are validity checked, colocation of master or slave determined and encoded.

The only inputs required for this program are the two master data cards that comprise the Loran triplet. It is possible to prepare and store operational data cards rather than master data cards. This may be desirable if there is no scarcity of cards and storage space, however the number of possible Loran triplets is considerably larger than the number of M / S pairs.

Program Card 3. This program card is used in conjunction with an operational data card for position determination. Required input is the indicated time difference T for each M/S pair of the triplet. Output is the computed latitude and longitude of the fix. Note: Every Loran fix has two possible solutions. The unwanted solution can almost always be rejected by inspection, however, if the stations of the Loran triplet are nearly aligned then either solution may be valid even though only one solution should be consistent with the flight plan.

C. HP-67/97 Calculator Programs

1. User Instructions

CARD 1

Step	Instructions	Input Data/Units	Keys	Output Data/Units
1.	Read in program card (both sides)			
2.	Input a unique ID number for the Loran pair*	ID	f a	ID
3.	Input the coding delay Δt	Δt	f C	Δt
4 a b.	Input the master station latitude and longitude (CHS for West)**	$\begin{aligned} & \phi_{M} \\ & \lambda_{M} \end{aligned}$	$\stackrel{\uparrow}{\text { A }}$	---
$5 a$. b.	Input the slave station latitude and longitude (CHS for West)	$\begin{aligned} & \$ s \\ & \lambda_{s} \end{aligned}$	$\begin{aligned} & \uparrow \\ & c \end{aligned}$	----
6 a b.	Run Pass a blank data card through the card reader.	None	E	crd
	The format for position data input is of the form: \pm DDD.MMSSFF, where DDD denotes degrees MMM denotes minutes SS denotes seconds FF dnotes hundredths of a second. The minus sign (-) denotes Southern latitudes or Western longitudes.			

Step	Instructions	Input Data/Units	Keys	Output Data/Units
1.	Read in program card 2		E	
2a.	Start	---		9.00
b.	9.00 will flash in the display. Insert a master data card containing the first pair of a Loran triplet.			
c.	9.00 will flash in the display once more. Insert a master data card containing the second pair of the Loran triplet.			9.00
d.	If the data form a proper triplet, "crd" will appear in the display.			crd
e.	Pass both sides of a blank card thru the card reader to produce the operational data card for the Loran triplet.			
	Should "error" appear in the display, then the two master data cards do not compare to form a Loran triplet. Both the latitude and longitude of the colocated stations must be identical on both master data cards in order to successfully produce an operational data card.			

Label the A key position with the identification number of the first Loran pair (the pair inserted in Step $2 b$) and label the B key position with the identification number of the second Loran pair (from Step 2c).

Step	Instructions	Input Data/Units	Keys	Output Data/Units
1.	Read in both sides of the program card 3.			
2.	Read both sides of the operational data card for the Loran triplet that you are receiving.			
3 a .	Set to compute Solution A.		f a	---
b.	Set to compute Solution B.		f b	---
4.	Input the observed time delay from the first Loran pair.	T	A	---
5.	Input the observed time delay from the second Loran pair.	T	B	---
6.	Compute fixLatitude Longitude		$\begin{aligned} & E \\ & R / S \end{aligned}$	Latitude Longitude
7.	Repeat from Step 2 with a new operational data card or from steps 3 or 4 as required.			

CARD 1

Step	Instructions	Input Data/Units	Keys	Output Data/Units
1.	In this series of examples we will prepare and use data cards for the Loran-C pairs 9930X and 9930Y. Read in program card 1 (both sides)			
2.	Input the ID for 9930x	9930.1	f a	9930.10
3.	Input the coding delay Δt for 9930X	36389.66	f c	36389.66
4 a b.	Input the master station latitude and longitude (CHS for West)	$\begin{array}{r} 34.034604 \\ -77.544676 \end{array}$		---
5 a. b.	Input the slave station latitude and longitude (CHS for West)	$\begin{array}{r} 46.463218 \\ -53.102816 \end{array}$	$\begin{aligned} & \uparrow \\ & c \end{aligned}$	---
6 a. b.	Compute Pass a blank data card through the card reader. Label the card 9930X MASTER	None	E	crd
7.	Input the ID for 9930 Y	9930.2	f a	9930.2
8.	Input the coding delay Δt for 9930Y	52541.31	$\mathrm{f} \quad \mathrm{c}$	52541.31
$9 a$. b.	Input the master station latitude and longitude (CHS for West)	$\begin{array}{r} 34.034604 \\ -77.544676 \end{array}$	$\begin{aligned} & \uparrow \\ & A \end{aligned}$	---
10a.	Input the slave station latitude and longitude (CHS for West)	$\begin{array}{r} 41.151193 \\ -69.583909 \end{array}$	$\begin{aligned} & \uparrow \\ & \mathrm{C} \end{aligned}$	----
11a. b.	Compute Pass a blank data card (or the second side of the card used in Step 6b) through the card reader. Label the side $9930 Y$ MASTER	None	E	crd
12.	These twn cards will be used in the next example.			

Step	Instructions	Input Data/Units	Keys	Output Data/Units
1.	Read in program card 2.			
2a.	Start	---	E	9.00
b.	While 9.00 is flashing in the display, insert the MASTER data card for station 9930X into the card reader.			
c.	When 9.00 starts flashing in the display again, insert the MASTER data card for station $9930 Y$ into the card reader.	---		9.00
d.	"Crd' will appear in the display.	---		crd
e.	Pass both sides of a blank card through the card reader. Label this card 9930X/9930Y OPERATIONAL DATA CARD. Then label the A key position $9990 x$ and the B key position 9930 . This card will be used in the next example.	---		0.00

CARD 3

Step	Instructions	Input Data/Units	Keys	Output Data/Units
1.	You are receiving 9930X and 9930Y and wish to obtain a fix. Read in program card 3 (both sides)			---
2.	Read in the operational data card for the triplet $9930 X / 9930 Y$ (both sides)			---
3.	Select Solution A.		$f \quad \mathrm{a}$	
4.	The indicated time delay is $49400 \mu \mathrm{~s}$ from 9930y. Input the indicated time delay.	49400	B	0.00
5.	The indicated time delay is 28800 us from 9930x. Input the indicated time delay.	28800	A	0.00
6.	Solution A: 420 $44^{\prime} 57{ }^{\prime \prime} \mathrm{N}$ Latitude $41^{\circ} 07^{\prime} 32^{\prime \prime}$ W Lonqitude		$\begin{aligned} & \mathrm{E} \\ & \mathrm{R} / \mathrm{S} \end{aligned}$	$\begin{array}{r} 42.4457 \\ -41.0732 \end{array}$
	$\left\{\begin{array}{l} \text { Solution B: } 27^{\circ} 00^{\prime} 07^{\prime \prime} \text { S Latitude } \\ 102^{\circ} 27^{\prime} 12^{\prime \prime} \mathrm{E} \text { Longitude } \\ \text { Since you are navigating over } \\ \text { the North Atlantic, Solution A } \\ \text { is the desired fix. } \end{array}\right\}$			
7.	Repeat from Step 2 with a new operational data card or from Steps 3 or 4 as required.			

3. Program Storage Allocations and Program Listings

Card 1.

Registers:

R0: ID
Rl: Δt
R2: 2c
R3:
R4: ${ }^{\theta} \mathrm{M}$
R5: ${ }^{\lambda} M$
R6: ${ }^{\varepsilon}$ MS
R7: ${ }^{6} S$
R8: λ_{S}
R9: ${ }^{\varepsilon_{S M}}$

SO: L
Sl: T
S2: U
S3: V
S4: X
S5: $\quad \mathbf{Y}$
S6: $\quad \delta_{1} d$
s7: $\Delta \lambda_{\mathrm{m}}^{\prime}$
S8: d
S9: f

Initial Flag Status and Use:

$0:$	OFF, Unused	2: OFF, Unused
$1:$	OFF, Unused	3:

Display Status:
DSP 4, FIX, DEG.

User Control Keys:

$\mathrm{A}: \quad \quad_{\mathbf{M}}{ }^{\uparrow} \lambda_{\mathbf{M}}$
a: Station ID
B:
b:
C: ${ }^{\phi} S^{+1}{ }^{\lambda} S$
c: Δt
D:
d:
E: Prepare data card
e:

Card 2.

Registers:

R0:	$\pm \mathrm{ID}_{1}$	so:	$\pm \mathrm{ID}_{2}$	RA:	
R1:	Δt_{1}	S1:	Δt_{2}	RB:	
R2:	$2 \mathrm{c}_{1}$	s2:	$2 \mathrm{C}_{2}$	RC:	
R3:		S3:		RD:	
R4:	${ }^{\text {Al }}$	S4:	${ }^{\text {A2 }}$	RE:	$a_{p}=21295.87$
R5:	$\lambda_{\text {Al }}$	S5:	$\lambda_{\text {A2 }}$	RI:	$f=1 / 298.26$
R6:	${ }^{\text {A }}$ Al	S6:	$\xi_{\text {A2 }}$		
R7:	$\theta_{\text {Bl }}$	S7:	${ }^{\text {B }}$ 2		
R8:	$\lambda_{B 1}$	S8:	$\lambda_{B 2}$		
R9:	$\xi_{B 1}$	S9:	$\xi_{B 2}$		

Initial Flag Status and Use:
0: OFF, Vertex determination
2: OFF, Validity checking
1: OFF, Unused
3: OFF, Unused

Display Status:

DSP 2, FIX, DEG

User Control Keys:
A:
a:
B:
b:
C:
c:
D:
d:
$E: \quad$ Run
e:

Card 3.

Registers:

R0:	ID_{1}	S0:	ID_{2}	RA:	M
R1:	Δt_{1}	S1:	Δt_{2}	RB:	u, N
R2:	(2c) ${ }_{1}$	S2:	$(2 \mathrm{c})_{2}$	RC:	D, d
R3:	$\mathrm{A}_{1}, \mathrm{c}_{2}, \mathrm{P}$	S3:	A_{2}	RD:	$\Delta \sigma$
R4:	$\theta_{1}=\theta_{F}$	S4:	${ }^{*}$	RE:	$a_{p}=21295.87$
R5:	$\lambda_{1}=\lambda_{F}$	S5:	λ_{2}	RF:	$\mathrm{f}=1 / 298.26$
R6:	ξ_{1}	S6:	ξ_{2}		
R7:	$\mathrm{c}_{1}, \mathrm{c}_{1}, \mathrm{H}$	S7:	C_{2}		
R8:	$B_{1}, S / a=r$	S8:	B_{2}		
R9:	a_{1}	S9:			

Initial Flag Status and Use:
0: OFF, Soln A, Soln B
1: OFF, Unused
2: OFF, M/S Vertex Flag
3: OFF, Unused

Display Status:
DSP 2, FIX, DEG

User Control Keys:
A: T_{1}
a: Soln A
B: T_{2}
b: Soln B
C:
c:
D:
d:
E: Run
e:

14

Ce：	UE：	\therefore it \therefore ：	Store	039	－LELE	21 15	Main Routine：Renewal Solution
485	c－ib	可 6	Station ID．	045	FCL4	3684	
E： 5	FTN	Ei		841	RLL 7	36 E\％	Compute and／or
084	－EEC	2116 iz		04.3	$+$	－55	store：
80：	5×1	T5 E1	Store Δ t．	045	2	82	
80	FTN	$E 4$		044	\div	－24	
E日，	HELH	＜1：	Store longitude	845	STG6	3513	$\theta_{m}=\left(\theta_{1}+\theta_{2}\right) / 2$
gils	H！	$16 \pm$	Store longitude	046	PCLi	3667	
Oベこ	5165	35135	and store parametric latitude	047	RCL4	3684	
010	EEE	2302	of the master station．	046	－	－45	
611	$\therefore T 14$	3544	Of the master station．	049	2	02	
012	FTN	24		00^{6}	\div	－24	
$0 \cdot 3$	1LELC	$21: 3$		651	STG0	3514	$\Delta \theta_{m}=\left(\theta_{2}-\theta_{1}\right) / 2$
014		$10^{\circ} 5$	Store longitude and	852	RCL8	36 EC	m 2
815	ST5	350		853	FEL5	3605	
016	6S69	$2 \overline{3}$	store parametric latitude	6． 0^{4}	－	-45	
615	5767	3517	of the slave station．	055	STOE	3515	$\Delta \lambda=\lambda_{2}-\lambda_{1}$
Q18	FTN	24		65	2	02	$\lambda_{2} 1$
019	－LEL9	21 ¢		（2）	\div	－24	
0 ET	\because	16^{-41}		058	STEI	3540	$\Delta \lambda_{m}=\Delta \lambda / 2$
00_{1}	HHE＊	1632	Subroutine to	059	F＊S	16－5i	m
025	TAN	43	convert	E60	RCLO	3614	
025	1	01	convert	86.1	COS	42	
0.4	ENT1	－i	geographic（geodetic）	$8 E 2$	只	55	$H=\cos ^{2} \Delta \theta_{m}-\sin ^{2} \theta$
ES	i	82	latitude to	E03	RCLC	3613	$\mathrm{m} \quad \mathrm{~m}$
$\because 5$	9	89	latitude to	00.4	SIH	41	
627	6	62	parametric latitude．	$6 E .5$	X2	53	
050	－	－62	parametric latitude．	866	－	－45	
日こ〇	2	03		867	RCLI	3640	
038	6	EE		． 868	SIH	$4 i$	
031	$1 \times$	E		609	x^{2}	52	
032	F－S	$10^{-5} 5$		©08	\therefore	－35	
053	ET09	3542	Store flattening	（1）	KCLO	$36: 4$	
		16－5：	constant．	¢iz	SIN	－ 41	
0.35	－	－45	constant．	073	X2	53	
0.36	TAM	$10-35$		0.74		－55	
037 938	TAN－ RTN	1643		075	9700	35 00	$L=\sin ^{2} \Delta \theta_{m}+H \sin ^{2} \Delta \lambda_{m}$
038	RTN	6^{4}		076	ENTT	－21	

E,	+	- -5		115	flis	36	
0.8	i	$\because:$		110	Fils	3005	
0^{-2}	-	-4		117	年	-45	
68\%	-45	-i		115	5005	35	$\mathrm{Y}=\mathrm{u}-\mathrm{V}$
0 O	C5-4	15:		115	Ins	- -	
$69 ?$	cris	350	$d=\cos ^{-1}(1-2 L)$	129	KCli	364	
605	jata	1645		$1: 1$	FiLi	36 E	
084	LS\%	10-6\%		12	$\stackrel{ }{ }$	-55	
ces	EId	41		123	+	-55	
856	\div	-i4		124	RCL9	306	
88,	$5 T 01$	3581	$\mathrm{T}=\mathrm{d} / \mathrm{sin} \mathrm{d}$	125	A	-	
cis	FiLic	$36:$		120	4	$0 \cdot$	
ceo	SIN	i:		12	\div	-̇i	
090	FCLI	$3 \mathrm{E}: 4$		128	5700	356	$\delta_{1} \mathrm{~d}=\mathrm{f}(\mathrm{TX}-\mathrm{Y}) / 4$
ect	cas	45		129	Chis	-23	${ }_{1}{ }^{\text {a }}=\mathrm{I}(\mathrm{X}$
832	\times	-35		136	RCLJ	3601	
$00 ?$	xi	5		121	-	-55	
69.4	ENT:	-21		122		3608	
0.35	${ }^{+}$	- E5		15	SIH	41	
680	!	U:		12.4	-	-35	
09-1	Kil	JE 0		135	F-5	1098	
00s	-	-45		130	F:5	1t-51	
090	$\stackrel{\square}{5}$	-i9		15	STJE	350	
106	ST0̇	350	$U=2 \sin ^{2} \theta_{m} \cos ^{2} L \theta_{\mathrm{m}} /(1-L)$	138	F\%S	it-5:	$2 \mathrm{c}=\mathrm{S} / \mathrm{a}_{\mathrm{e}}=\left(\mathrm{T}-\delta_{1} \mathrm{~d}\right)$ sin d
101	FこL	J̄E it	m m ${ }^{\text {m }}$	159	PCL5	3505	
$10 ?$	SIN	46 !		140	RCL 8	36 -	
183	FCLL_{6}	3612		141	ENT ${ }^{1}$	- : !	
$10:$	695	İ		142	$+$	-55	
195	\therefore	\because		143	1	E!	
100	$\therefore 2$	5		144	-	-45	
187	ERIT?	-2:		145	4	E:	
188	+	-E5		146	RCL4	30.44	
105	FCLG	Jte 0		147	-	-4E	
110	$\stackrel{\square}{\square}$	-24		148	x	-35	
111	¢T03	3505	$\mathrm{V}=2 \sin ^{2} \Delta \theta_{m} \cos ^{2} \theta_{m} / L$	149	+	-55	$F / 2=[Y-(1-2 L)(4-X)]$
112	kCL2	3608		150	RCLS	3602	
113	$\stackrel{+}{\text { STO4 }}$	-55		151	RCLI	36 Cl	-2G = fT
114	ST04	3504	$\mathrm{X}=\mathrm{U}+\mathrm{V}$	152	x	-35	$-2 \mathrm{G}=\mathrm{PT}$

Subroutine
Exchange storage of
master and slave station
is at the vertex of the
triplet.
Change sign of the ID
to signal that the slave
station is at the triplet
vertex.
Subroutine
Dtation of one pair is co-
located with the slave
station of the other pair.
Rearrange data and set
f2 if a colocation is
found.

号

$\alpha=\gamma+\cos ^{-1}(\kappa / \rho)$	115		-65	
	116	-	-45	
Store α	117	;	-1	
	118	${ }^{+}$	-55	
	119	5706	3515	$\mathrm{D}=1-2 \mathrm{c}_{2}-\mathrm{c}_{1} \mathrm{M}$
	150	1:	52	
	121	5123	35-35 $\mathbf{6}^{3}$	
	122	FCLS	呺	$P=\mathrm{C}_{2} / \mathrm{D}$
	123	$\stackrel{\mathrm{KCl}}{\substack{\text { c }}}$	30	
	125	STL	3515	$\mathrm{d}=\mathrm{s} /(\mathrm{ad}$)
	126	RCL4	3664	$\mathrm{d}=\mathrm{s} /\left(\mathrm{a} \mathrm{e}^{\mathrm{D})}\right.$
$r=\operatorname{qatn}\left[\frac{B_{i}}{C_{i} \cos \left(\alpha-\xi_{i}\right)+A_{i}}\right]$	127	:	-	
	128	$+$	84	
	130	cos	36 4	
	131	\%	-35	
	132	\%	-i	
	133	+F	34	$\sigma_{1}=q \operatorname{tatn}\left(N, \sin \theta_{1}\right)$
$\mathrm{M}=\cos \theta_{1} \sin \alpha_{12}$	134	Ci:	-51	
	135	RCi	3613	
where $\alpha_{12}=\xi_{1}$	135	-	-i5	
Where 12	137 189	y^{2}	- $\begin{array}{r}05 \\ -95\end{array}$	
$c_{1}=f M$	139	STES	3512	$u=2\left(\sigma_{1}-\mathrm{d}\right)$
	140	Cos	$4{ }^{2}$	\square_{1}
	141	-	0	
	142	\checkmark	-as	
	143	kici	36	
	144	\therefore	-35	
	145	CHS	-28	
$c_{2}=f\left(1-M^{2}\right) / 4$	146 147	\pm	-	
	147 148	KCL	50-5	
	149	RCIS	3013	$W=1-2 p \cos u$
	150	$\stackrel{+}{+}$	-55	
	151	cos	4	$v=\cos (u+d)$
	15%	\because	-35	

D. Loran-C Fixing Algorithms

The development of the Loran fixing algorithms in this report is presented in more detail in a companion report [Ref. 3] and will not be repeated here.

The basic Loran-C equation [Ref. 4] can be written as

$$
\begin{equation*}
T=\left[T_{S}+p\left(T_{S}\right)\right]-\left[T_{M}+p\left(T_{M}\right)\right]+\left[T_{B}+p\left(T_{N}\right)\right]+\delta \tag{1}
\end{equation*}
$$

where
T is the "indicated time difference" in microseconds, T_{M}, T_{S} is the distance, in microseconds, from the master and the slave to the receiver, respectively,
T_{B} is the distance, in microseconds, between the master and the slave,
δ is the assigned coding delay, in microseconds, and $p(T)$ is the secondary phase correction, in microseconds, for an all sea water path of length T.

The quantity

$$
\wedge_{t}=\left[T_{B}+p\left(T_{B}\right)\right]+\delta
$$

is a constant for each master/slave pair. The following World Geodetic System 1972 (WGS 72) values have been adopted for Loran-C navigation [Ref. 4]:

$$
\begin{aligned}
v_{0}= & 299792458 \text { meters/second is the velocity of light } \\
& \text { in free space, } \\
\eta= & 1.000338 \text { is the index of refraction of the surface } \\
& \text { of the earth for standard atmosphere and } 100 \mathrm{kHz} \\
& \text { electromagentic waves, } \\
a_{e}= & 6378135.00 \text { meters is the equatorial radius of the } \\
& \text { earth, and } \\
f= & 1 / 298.26 \text { is the flattening factor }\left(1-b / a e^{\prime}\right. \text { where } \\
& b \text { is the polar radius) of the earth. }
\end{aligned}
$$

Accurate formulas for computing the secondary phase correction $p(T)$ are contained in Reference 4 , but for use with the handheld calculator the following linear approximation [Ref. 3] will be used:

$$
p(T)=a_{1}+a_{2} T
$$

where
and

$$
\begin{aligned}
& a_{1}=-0.321 \\
& a_{2}=0.000635
\end{aligned}
$$

Using this approximation, it is possible to solve Equation 1 for the quantity $T_{S}-T_{M}$. We find

$$
\begin{equation*}
T_{S}-T_{M}=(T-\Delta t) /\left(1+a_{2}\right) \tag{2}
\end{equation*}
$$

On the surface of a sphere a hyperbolic line of position can be represented by the equation [Ref. 3, page 175]

$$
\begin{equation*}
\tan r=\frac{\cos 2 a-\cos 2 c}{\sin 2 c \cos \omega+\zeta \sin 2 a} \tag{3}
\end{equation*}
$$

where the origin of the coordinate system is at the prime focus of the spherical hyperbola, 2 c is the spherical arc joining the foci, 2a is a constant for any one LOP, and r and ω are the spherical coordinates of a point on the LOP. If the base line of the coordinate system is the arc joining the foci then ω is the spherical polar angle from the base line to a point P on the LOP and r is the spherical polar distance (or arc) from the prime focus to P. Using the Loran system we take $\zeta=+1$ if the prime focus is at a master station and we take $\zeta=-1$ if the prime focus is at a slave station. If we take $v=v_{0} / \eta$ to be the velocity of 100 kHz electromagnetic radiation of the earth's surface then

$$
2 a=v\left(T_{S}-T_{M}\right) / a_{e}
$$

or, using Eq. (2),

$$
\begin{equation*}
2 a=(T-\Delta t) / a_{p} \tag{4}
\end{equation*}
$$

where

$$
a_{p}=\frac{a_{e}\left(1+a_{2}\right)}{v_{0} / \eta}=21295.87 \mu \mathrm{~s}
$$

The baseline between master and slave can be obtained from

$$
\begin{equation*}
2 c=v T_{B} / a_{e} \tag{5}
\end{equation*}
$$

Here 2 c is computed by program card 1 (preparation of master data cards) using the algorithm in Section E.

Consider a Loran-C triplet with master stations colocated. Let ξ_{1} and ξ_{2} denote the azimuth angles of slave $1\left(S_{1}\right)$ and slave $2\left(S_{2}\right)$, respectively, measured from North toward the East from the master stations (M) (see Fig. 3). Further, let α and r denote the azimuth and spherical polar arc (distance) of the receiver (R) from M. For this geometry, Eq. (3) can be written as

$$
\begin{equation*}
\tan r_{i}=\frac{B_{i}}{C_{i} \cos \left(\alpha-\xi_{i}\right)+A_{i}} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{i}=\zeta_{i} \sin 2 a_{i} \\
& B_{i}=\cos 2 a_{i}-\cos 2 c_{i}
\end{aligned}
$$

and

$$
c_{i}=\sin 2 c_{i}
$$

for the $i=$ th Loran pair, $i=1,2$. Since $r=r_{1}=r_{2}$, tan r_{i} can be eliminated in Eq. (6). The resulting equation can be rewritten as

$$
\begin{equation*}
C \cos \alpha+S \sin \alpha=K \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& C=B_{1} C_{2} \cos \xi_{2}-B_{2} C_{1} \cos \xi_{1} \\
& S=B_{1} C_{2} \sin \xi_{2}-B_{2} C_{1} \sin \xi_{1} \\
& \kappa=B_{2} A_{1}-B_{1} A_{2} .
\end{aligned}
$$

and

Figure 3. Geometry of a Loran Triplet and a Receiver.

If we define $\beta>0$ and γ by the equations

and

$$
\begin{align*}
& \rho \cos \gamma=C, \\
& \rho \sin \gamma=S, \tag{8}
\end{align*}
$$

then

$$
\beta=\sqrt{c^{2}+s^{2}}
$$

and

$$
\gamma=\operatorname{qatn}(S, C)
$$

Here the function qatn (y, x) is the arctangent of y / x adjusted for the proper quadrant according to the signs of x and y. A compact form of this function is

$$
\operatorname{qatn}(y, x)=\tan ^{-1} \frac{y}{x+10^{-9} t(x=0 ?)}+\pi t(x<0 ?)
$$

where

$$
t(z)=1 \text { when } z \text { is true }
$$

and

$$
t(z)=0 \text { when } z \text { is false. }
$$

When convenient we will use the notation qatn(y/x) interchangeably with qatn (y, x). The qatn function is equivalent to the polar angle obtained using the rectangular to polar conversion function on the HP-67/97.

Now substitute Eq. (8) into Eq. (7) and solve for

$$
\begin{equation*}
\alpha=y \pm \cos ^{-1}(\kappa / \beta) \tag{9}
\end{equation*}
$$

to obtain the azimuth angle α of the two points of intersection of the LOP's. Finally we obtain a value for r by substituting each α into Eq. (5). We find that

$$
r=\operatorname{qatn}\left[\frac{B_{i}}{C_{i} \cos \left(\alpha-\xi_{i}\right)+A_{i}}\right] \quad \text { for } i=1 \text { or } 2
$$

The distance and azimuth from M or the triplet vertex can be converted into the latitude and longitude of the two possible positions of R.

The fixing algorithm then uses α and r in the direct. solution algorithm of spheroidal geodesy (Section F).

E. The Reverse (Inverse) Solution Algorithm

This reverse solution algorithm is a modification of the first order in flattening (f) algorithm given by Thomas [Ref. 5, pp. 8-101. Thomas' notation has been followed as closely as possible for ease of comparison of the algorithms. The gatn function is defined in Section D. West longitudes (λ) and South latitudes (1) are negative. We are given the points $P_{1}\left(:_{1},{ }_{1}\right), P_{2}\left(\Phi_{2}, \lambda_{2}\right)$ on the spheroid and are to find the distance S between the points and the forward and back azimuths, ${ }^{12}$ and ${ }^{2} 2_{1}$. Given quantities are $\Phi_{1}, \lambda_{1}{ }^{\prime} \$_{2}$ and ${ }_{2}$. No assumptions about the relative location of P_{1} and P_{2} are required. The modified mo..rrir solution algorithm is:

$$
-1 i,+41) 4, \quad \therefore \frac{1}{m}(\therefore+() \quad \therefore
$$

$$
\begin{aligned}
& i_{i}=\tan ^{-1}\left[(1-f) \tan \phi_{i}\right], \quad i=1,2 . \\
& { }_{m}=\left(\cdot_{1}+4_{2}\right) / 2, \quad \therefore H_{m}=\left(\theta_{2}-\cdot \cdot_{1}\right) / 2, \quad \therefore i=1_{2}-\lambda_{1} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. }-\sin ^{2} \therefore \mu_{m}+H \sin ^{2} \therefore_{m}=\sin ^{2}(d / 2), 1-L=\cos ^{2}(d / 2) \text {, } \\
& { }^{-1}(1-2 L), U=2 \sin ^{2} \operatorname{mos}^{2} \cdot \cos ^{\prime}(1-L), \\
& V . \quad \therefore 1 n^{2} \therefore \cos ^{2} \quad n+1, x=u+v, Y=u-v, \\
& \text { : in } 4,{ }_{1}^{d}=f(T X-Y) / 4, S=a_{t}\left(T-i{ }^{d}\right) \sin d, \\
& \because Y-(1-2 L)(4-X) 1, \quad ;=f T / 2,
\end{aligned}
$$

$$
\begin{aligned}
& t_{1}=q \tan \left(-\sin \Delta \theta_{m} \cos \Delta \lambda_{m^{\prime}}^{\prime} \cos \theta_{m} \sin \Delta \lambda_{m}^{\prime}\right), \\
& t_{2}=q \tan \left(\cos \Delta \theta_{m} \cos \Delta \lambda_{m^{\prime}}^{\prime} \sin \theta_{m} \sin \Delta \lambda_{m}^{\prime}\right), \\
& \alpha_{12}=t_{1}+t_{2}, \alpha_{21}=t_{1}-t_{2} .
\end{aligned}
$$

This reverse solution algorithm is used by program card 1 (preparation of master data cards) to compute the baseline distance $2 c$ and the azimuths $\xi_{M S}$ and ${ }^{\xi_{3}}$ SM between the master and slave stations of a Loran pair.

Details of the modifications made to Thomas' algorithm are contained in Reference 3.

F. The Direct Solution Algorithm

This direct solution algorithm is a modification of the first order in flattening (f) algorithm given by Thomas [Ref. 5, pp. 7-8]. Thomas' notation has been followed as closely as possible for ease of comparison of the algorithms. The qatn function is defined in Section D. West longitudes and South latitudes are negative. We are given the point $P_{1}\left(\phi_{1}, \lambda_{1}\right)$ on the spherioid, where ϕ_{1}, λ_{1} are the geodetic latitude and longtiude (geographic coordinates); the forward azimuth ${ }^{\alpha}{ }_{12}$ and the distance S to a second point $P_{2}\left(\phi_{2}, \lambda_{2}\right)$; and from these we are to find the geographic coordinates $\phi_{2}{ }^{\prime} \lambda_{2}$ and the back azimuth ${ }^{\alpha}{ }_{21}$. The given quantities are '1' ' 1 ' ' 12 and S. No assumptions about the relative location of P_{1} and P_{2} are required. The modified direct solution algorithm is:

$$
\begin{aligned}
& \left.\theta_{1}=\tan ^{-1}((1-f) \tan)_{1}\right], \quad M=\cos \theta_{1} \sin \alpha_{12} \\
& \mathrm{~N}=\cos \mathrm{c}_{1} \cos \alpha_{12}, \quad c_{1}=\mathrm{fm}, \quad c_{2}=\mathrm{f}\left(1-\mathrm{m}^{2}\right) / 4, \\
& D=1-2 c_{2}-c_{1} M, \quad P=c_{2} / D, \quad \sigma_{1}=\left(\operatorname{atn}\left(N, \sin \theta_{1}\right)\right. \\
& d=s /\left(a_{e} D\right), \quad u=2\left(i_{1}-d\right), \quad w=1-2 P \cos u, \\
& V=\cos (u+d), \quad Y=2 P V W \sin d, \quad \Delta \sigma=d-Y, \\
& { }_{21}=\operatorname{tath}\left[-M,-\left(N \cos \alpha-\sin \theta_{1} \sin \Lambda(\theta)\right),\right. \\
& K=(1-f)\left(M^{2}+\left(N \cos \therefore-\sin { }_{1} \sin \Delta(y)^{2}\right)^{1 / 2}\right. \text {. } \\
& t_{,}=\tan ^{-1} \mid\left(\sin { }_{1} \cos A+N \sin (n) / k \mid\right. \text {, }
\end{aligned}
$$

This direct solution algorithm is used by program card 3 (improved fix program) to compute the latitude and longitude of the receiver using the azimuth and range of the receiver from the Loran triplet vertex.

Details of the modifications made to Thomas' algorithm are contained in Reference 3.

G. Discussion and Some Typical Results

The HP-67 program design specifications of

COMPATWINGSPAC [Ref. 6] are contained in the following statement.
"There is a need for an HP-67 program that will compute a geographical position from two Loran delay rate readings. Several methodoloqies are available to compute the desired position but computational complexities increase with the desired accuracy and flexibility. The most desirable accuracy would be an error of less than $4 \mathrm{n} . \mathrm{ms}$. at a range of $500 \mathrm{n} . \mathrm{mi}$. Wili less error closer to the. stations. It is likely that program length considerations will require that the station pairs have a common site (i.e. two slaves or two masters at the same location). This is not an unusual situation as evidenced by strings of station pairs along coast lines. A data card will probably be necessary for the station pairs to be used. However, more than one program card is unacceptable due to the decrease in functional utility when compared to the manual plotting method. As a final requirement, the fix should be obtainable on either side of the baselines connerting the stations, and not limited to a geometric position relative to one side or the other of the stations."

It was further stated that the maximum computation time to obtain a fix be 1.5 minutes.

It is felt that these design goals have been satisfied. Although one program is required to prepare master data cards for all Loran-C pairs and a second card is required to prepare
operational data cards, one each for every triplet, this preparation should be done only once. The data cards should be supplied to users verified and labeled, by the Fleet Mission Program Library. One program card and an appropriate operational data card are all that is required for the fixing algorithm.

The fixing algorithm will display one of the two possible receiver positions in 38 seconds following the entry of the time delay readings. Since there are situations in which either of the two solutions could be the valid solution; the decision of which solution to use should be left to the operator, not the program designer.

Testing of the algorithm for all Loran-C triplets and positions relative to those triplets was too extensive a program to be carried out in the available time. Some "typical" scenarios however are presented in Tables I through IV. As can be seen all errors are all well within the design specifications of $4 \mathrm{n} . \mathrm{mi}$ at $500 \mathrm{n} . \mathrm{mi}$ range from the stations. The time delay values in these Tables were generated using a program discussed in Reference 3. It is recommended that the $\mathrm{P}-3$ community test the algorithm for accuracy in known areas of operation and examine the results for possible regions in which the algorithm may fall outside the design requirements. Such testing shoild be compatible with the known "unreliable regions" shown on the Loran-C charts.

Table I. Moffett Field South

Position		Indicated Time Delay		Fix		
Lat	Long	9940x	9940Y	Lat (N)	Long (W)	n.mi
$24^{\circ} \mathrm{N}$	$122{ }^{\circ} \mathrm{W}$	27726.19	40912.76	23059'55"	$122^{\circ} 00^{\prime} 01^{\prime \prime}$	0.08
26	122	27715.97	40998.39	25*59'57'	$122^{\circ} 00^{\prime} 01^{\prime \prime}$	0.05
28	122	27702.41	41117.84	2759'59"	$122^{\circ} 00^{\prime} 00^{\prime \prime}$	0.02
30	122	27683.53	41291.85	29*59'59"	$122^{\circ} 00^{\prime} 00^{\prime \prime}$	0.02
32	122	27655.47	41555.46	$32^{\circ} 00^{\prime} 00^{\prime \prime}$	122"00'00"	0.00
34	122	27609.63	41959.57	$34^{\circ} 00^{\prime} 00^{\prime \prime}$	$122^{\circ} 00^{\prime} 00^{\prime \prime}$	0.00
36	122	27523.56	42544.11	$36^{\circ} 00^{\prime} 00^{\prime \prime}$	121*59'59"	0.01
38	122	27334.61	43248.22	$38^{\circ} 00^{\prime} 00^{\prime \prime}$	121*59'58'	0.03

Table II. Moffett Field West

Position		Indicated Time Delay		Fix		
Lat	Long	9940Y	9940w	Lat (N)	Long (W)	$\mathrm{n} . \mathrm{mi}$
$37^{\circ} \mathrm{N}$	$122^{\circ} \mathrm{W}$	42892.86	16257.23	36*59'59'	$122^{\circ} 00^{\prime} 01^{\prime \prime}$	0.02
37	125	43056.68	15765.13	$37^{\circ} 00^{\prime} 00^{\prime \prime}$	$125^{\circ} 00^{\prime} 00^{\prime \prime}$	0.00
37	128	43137.78	15327.12	$37^{\circ} 00^{\prime} 00^{\prime \prime}$	$128^{\circ} 00^{\circ} 00^{\prime \prime}$	0.00
37	131	43191.10	14970.77	$37^{\circ} 00^{\prime} 00^{\prime \prime}$	$131^{\circ} 00^{\prime} 00^{\prime \prime}$	0.00
37	134	43232.38	14683.74	$37^{\circ} 00^{\prime} 00^{\prime \prime}$	$134^{\circ} 00^{\prime} 00^{\prime \prime}$	0.00
37	137	43267.42	14449.40	$37^{\circ} 00^{\prime} 00^{\prime \prime}$	$137^{\circ} 00^{\prime} 00^{\prime \prime}$	0.00
37	140	43298.80	14254.02	$37^{\circ} 00^{\prime} 00^{\prime \prime}$	$140^{\circ} 00^{\prime} 01^{\prime \prime}$	0.01
37	143	43327.85	14087.43	$37^{\circ} 00^{\prime} 01^{\prime \prime}$	142*59'59'	0.02

Table III. Brunswick Northeast

Position		Indicated Time Delay		Fix		
Lat	Long	79302	9930x	Lat (N)	Long (W)	n.mi
$60^{\circ} \mathrm{N}$	$30^{\circ} \mathrm{W}$	52437.86	28451.72	6000'03"	2959'32'	0.24
58	35	51960.93	28391. 50	58 ${ }^{\circ} 00^{\prime} 00^{\prime \prime}$	34* ${ }^{\circ} 9^{\prime} 46^{\prime \prime}$	0.11
56	40	50992.37	28359.15	55*59'59"	3959'54"	0.06
54	45	49292.46	28370.85	53*59'59"	4459'57'	0.03
52	50	47165.60	28490.64	$52^{\circ} 00^{\prime} 00^{\prime \prime}$	4959'59"	0.01
50	55	45236.59	29070.48	$50^{\circ} 00^{\prime} 00^{\prime \prime}$	$55^{\circ} 00^{\prime} 00^{\prime \prime}$	0.00
48	60	44505.60	30991.94	$48^{\circ} 00^{\prime} 00^{\prime \prime}$	$60^{\circ} 00^{\prime} 00^{\prime \prime}$	0.00
46	65	44475.70	33697. 14	$46^{\circ} 00^{\prime} 00^{\prime \prime}$	$65^{\circ} 00^{\prime} 00^{\prime \prime}$	0.00
44	70	44588.91	36567.42	$43^{\circ} 59^{\prime} 59^{\prime \prime}$	$69^{\circ} 59^{\circ} 59^{\prime \prime}$	0.02

Table IV. Jacksonville Southeast

Position		Indicated Time Delay		Fix		
Lat	Long	9930W	9930x	Lat (N)	Long (W)	$\mathrm{n} . \mathrm{mi}$
$9^{\circ} \mathrm{N}$	$47^{\circ} \mathrm{W}$	13058.04	36466.46	859'19"	46*59'22"	0.92
12	52	12984.71	37288. 35	11*59'34"	515 ${ }^{\circ}{ }^{\prime \prime}{ }^{\prime \prime}$	0.57
15	57	12898.73	38267. 58	14*59'44"	5659'47'	0.34
18	62	12793.91	39431.32	17059'52"	61*59'54"	0.16
21	67	12656.52	40794. 36	2059'56"	66059'57"	0.08
24	72	12451.30	42330.55	23*59'59"	71059'59"	0.02
27	77	12097.12	43876. 62	27*00'01"	$77^{\circ} 00^{\prime} 00^{\prime \prime}$	0.02
30	82	12973.95	44768. 53	$30^{\circ} 00^{\prime} 01 \prime$	$82^{\circ} 00^{\prime} 06^{\prime \prime}$	0.09

H. References

1. J. A. Pierce, A. A. McKenzie, and R. H. Woodward, editors, LORAN, M.I.T. Radiation Laboratory Series, McGraw-Hill Book Company, Inc., 1948.
2. G. Hefley, The ievelopment of Loran-C Navigation and Timing, National Bureau of Standards Monograph 129, U. S. Department of Commerce, U. S. Government Printing Office, Washington, D.C. 20402, October 1972.
3. R. H. Shudde, "An Algorithm for Position Determination Using Loran-C Triplets with a BASIC Program for the Commodore 2001 Microcomputer," Technical Report NPS55-80-009, March 1980, Naval Postgraduate School, Monterey, CA 93940 .
4. LORAN HYPERBOLIC LOP FORMULAS AND GENERAL SPECIFICATIONS FOR LORAN-C (20 June 1949) were obtained from G. R. Young, Acting Chief, Navigation Department, Defense Mapping Agency, Hydrographic/Topographic Center, Washington, D.C. by private communication, 5 March 1980.
5. Paul D. Thomas, "Spheroidal Geodesics, Reference Systems, and Local Geometry," SP-138, U. S. Naval Oceanographic Office, Washington, D.C., January 1970.
6. Private communication from COMPATWINGSPAC representatives, Moffett Field, CA., October 1979.

APPENDIX. Loran-C Station Parameters

The following list contains the pertinent parameters for each Loran-C station pair. This list was compiled from data in Reference 4. Each column contains the following information:

1. The Loran-C station pair designator
2. Δt, the sum of the coding delay plus one way baseline time, including the secondary phase correction for an all seawater path, in microseconds.
3. The master station latitude.
4. The master station longitude.
5. The slave station latitude.
6. The slave station longitude.

In this list, negative longitudes are West and positive longitudes are East. If desired, this convention may be reversed since the algoxithms are independent of such external conventions; if this is done, care should be taken that the signs of all longitudes in the list are reversed. In columns 3 through 6 the latitudes and longitudes appear to be in decimal form, but the actual format is DDD.MMSSFF (which is compatible with the $\mathrm{HP}-67 / 97 \mathrm{H} . \mathrm{MS}$ input mode) where

DDD designates degrees,
MM designates minutes,
SS designates seconds, and
FF designates hundredths of seconds.

Station	Location
4990	Central Pacific
5930	East Coast, Canada
5990	West Coast, Canada
7930	North Atlantic
7960	Gulf of Alaska
7970	Norwegian Sea
7980	Mediterranean Sea
7990	Great Lakes
8970	East Coast, U.S.A.
9930	West Coast, U.S.A.
9940	Northeast U.S.A.
9960	Northwest Pacific
9970	North Pacific
9990	

Station

4990
5930
5990
7930
7960
7970

7980
7990

8970
9930

9940
9960

9990

Location
Central Pacific
East Coast, Canada
West Coast, Canada
North Atlantic

Gulf of Alaska
Norwegian Sea

Southeast U.S.A.
Mediterranean Sea

Great Lakes
East Coast, U.S.A.

West Coast, U.S.A.
Northeast U.S.A.

North Pacific
Defense Technical Information Center 12Cameron StationAlexandria, VA 22314
Library, Code 0212 2
Naval Postgraduate School
Monterey, CA 93940Library, Code 552Department of Operations ResearchNaval Postgraduate SchoolMonterey, CA 93940
Dean of Research, Code 012 1
Naval Postgraduatr SchoolMonterey, CA 93940
Office of Naval Research 2
Fleet Activity Support DivisionCode ONR-2 30800 North Quincy Street
Arlington, VA 22217
Attn: Mr. Robert Miller
Office of Nival pesearch 1
Code ONR-434
800 Nor: $: ~ Q u i n c y ~ S t r e e t$
Arlington, VA 22217
Navy Tactical Support Activity 2P.O. BOX ? 04t
Silver Soriags, MD 20910
COMPATWIVGSPAC 4Naval Air Station
Moffet: Fin:l, Cr 94035
Attn: Codu 5l and Code 532
COMDAT:H! :rspriv?2
Naval $:$: Stat ion
Brunsw: \because ', $\because!: 04011$
Attn: Code N7
COMFATWI:OG ELE:VR: TSC NAS 1
Jacksonville, FL 32212
 2Naval A: \because itationJack!r:: $: 1, \quad \because!$ 3223Attn: Tusi: siticur
Commanding Officer
Air Test and Evaluation Squadron 1 (VX-1)
Patuxent River. MD 20670
Attn: Code 713
Commanding Officer
Submarine Development Group Two Groton, CT 06340

Director 1
Strategic Systems Project Office
1931 Jefferson Davis Highway
Arlington, VA 20376
Attn: Code SP2021
Naval Air Development Center Johnsville, FA 18974
Attn: Code 2022
Center for Naval Allalysis
1401 Wilson Boulevird
Arlington, VA 222 (19
Attn: Greg Watson
Naval Weapons Laboratory
Dahlgren, VA 22443
Naval Weapons Center
1
China Lake, CA $93: 555$
Naval Surface Weapons Center
1
White Oak
Silver Spring, MD 20910
Naval Research Laboratory
1
Washington, D.C. 20390
David Taylor Naval Ship Research
and Development Center
Bethesda, MD 20034
Naval Ocean Systcms Center 1
San Diego, CA 92132
Naval Intelligence Support Center
4301 Suitland Foad
Washincton, D.C. 20390
Naval Electronics Systems Command 1 2511 Jeffersun Duvis lighway Arlington, V N 20360
Naval Underwater Systems Center 1
Code Sis 3
New Lonion, CT 06320
Naval Ship Engineerinq Center 1
Hyattsville, MD 20782
Naval Coastal Systems Laboratory 1
Panama City, FL 32401
Naval Air Systems Command 1
Code 370
Washington, D.C. 20361
Naval Sea Systems Command 1
Code 03izt
Washington, D.C. 20362
Naval Underwater Sy;tems Center 1
Newport. Phode Islaid 02840
Naval Oranance Station 1
Indian Head, MD 20;40
Naval Surface Weapois Center 1
Dahlgren, VA 22448
Anti-Sutmarine Warfare Systems Project Office 1
Department of the Navy Washington, D.C. 20360
Attn: Code ASW-137
Surface Warfare Development Group 2
Naval Amehibious Base
Little Cresk, VA 23511
Attn: Code N32 and C. Cartledge
combuscramme 1
Norfolk, rA 23511
Attn: Code :Vil2
Deput \because Comsunder 1
Operatirna! rist and Evaluation Force Pacific
NAS : Uorth Island
San Diaco. Ca.vp-241NAS
Jacksonville, FL 32212
Attn: ituc ficnrath D. Walker

Assistant Wing TAC D\&E Officer
ASW Operations Department
NAS
Cecil Ficld, FL 32215
Attn: Code vS-24

Naval Electromagnetic Spectrum Center

Naval Communications Unit
Washington, D.C. 20390

Attn: CDR Claude I aVurre

VS-Support Unit
NAS
Cecil Field, FI, 32215
Attn: CWO Wentworth
1 ROCAL-Codt 18
Fleet kuadiness Office
NOSC
San Dicao, CA 92152
Attn: Jim Grant
Chief of Naval Matericl I
MAT 0GDl
Departmont of the Nave
Washincton, r.C. ? 0360
Attn: CuR prilip Harvey
LT Jan Smith
1
COMCRUDESGRU TWO
FPO New York, NY 09501
Dr. Thomas Burnett 1
Dept. of Management Science
OR Study Group
U.S. Naval Academy

Annapolis, MD 21401
U. S. Naval Oceanoqraphic office

1
Washington, D.C. 20309
Attn: Paul D. Thomas
Naviaration Department
1
Defonse Mapping Agency Hydrographic Topographic center Washiniton, D.C. 20315
Attn: G. R. DeyoungL'T Michael D. Redshaw1
Helicopter Antisubmarine Squadron 7
FPO New York 09501
Mr. Raymond F. Fish 1Naval Underwater Systems CenterNewport, RI 02840
LT Kenneth W. Peters 1
Commanding Officer
U. S. Naval Air Facility APO New York 09406
LT Peter W. Marzluff 1Surface Warfare Officer's SchoolNewport, RI 02840
L'T Ray C. Pilcher, Jr.1Surface Warfare Officer's SchoolNiwport, RI 02840
LT William M. Yerkes 1
ASWOC NAF
S'qonella Sicily
Flo New York 09523
LiT A. J. Kocirey1CommanderCruiser-Destroyer Group Two
FPO New York 09501
LCDR E. G. Schwier1
USS Estocin (FFG 15)
FPO New York 09501
LCOER. R. Hillyer 1Code N3llCommander, Carrier Group FourF'po New York 09501
ICDR J. W. Pattison1Code N 321
Commander, Carrier Group Eight
Pru New York 09501
LT Richard C. Myers 1
ASWCC NAF LAJES
szores
AP() New York 09523
LT R. N. Christianson 1
ASW
Naval Postgraduate School
Monterey, CA 93940
LT L. R. Erazo 1
ASWOC SIGONELLA
FPO New York 09523
LT R. E. Springman 1
USS Lexington (ANT-16)
Naval Air Station
Pensacola, FL 32504
LT Philip D. Ward 1
Patrol Squadron 26
Special Project Det
Naval Air Station
Brunswick, ME 04011
LT RobertJ. Knight 1
USS John F. Kennedy (CV-67)
FPO New York 09501
LT Richard O. White, Jr. 1
USS Dwight D. Eisenhower (CVN-69)
FPO New York 09501
LT David E. Hebdon 1
USS John F. Kennedy (CU-67)
FPO New York 09501
LCDR Michael A. Santoro 1
Air Antisubron 41
NAS North Island
San Diego, CA 92135
LCDR Robert M. Hanson 1
Helasron Four
NAS North Island
San Diego, CA 92135
LT Michael D. Thomas 1
2476 Ridgecrest Ave.Orange Park, FL 32073
LT Carl E. Garrett, Jr. 1
Class 65, Dept. Head Course
Surface Warfare School, Naval BaseNewport, RI 0284047Naval Postgraduate SchoolMonterey, CA 93940
Attn: Prof. R. N. Forrest, Code 55Fo 1
Prof. R. H. Shudde, Code 55Su 200R. J. Stampfel, Code 551
LT M. D. Clary1
USS PAIUTE (ATF-159)
FPO New York 09501

