Reply To:

Richard J. Nelson

2541 W. Camden Place

Santa Ana, CA 92704
U.S.A.

Dear PPC Member,

Enclosed is a copy of "Better Programming on The HP-67/97. The history and
purpose of this publication is described on pages two and three. You will

find this publication helpful even if you don't have or use an HP-67 or HP-97.
The format is different from PPC JOURNAL although the front cover intentionally
resembles a reqgular monthly issue. The print is larger and there is space for
notes and additions.

The index on page 31 has a black page edge 'TAB'. For convenience in leafing
from the back you may want to make a similiar ‘tab' on the opposite side on
page 30.

PPC is a club, we share our experiences and mutually help each other to improve
our programs and uses of our machines. We do not engage in the business of
selling services or products. We must support ourselves, however, and if
members wish to purchase additional copies of "Better Programming on The
HP-67/97 they may order them at the rates given below.

Sent To: Single copy Two copies
U.S. ,Canada,Mexico $3.00 $5.00
Europe $4.30 $6.90
Asia $4.70 $7.50
South/Central

America $4.00 $6.25

Your comments and suggestions are welcome and will be applied to future
PPC publications.
Happy Programming

d
Errata: Page 2, 3" paragraph blank .
space after "all HP" should be machines Ricdad 7eloon

C .

t e, formerly the HP-65 Users Club, 1s the worlds first and largest organization devoted to personal programmable
calculators. The Clud is a volunteer, non-profit, loosely organized, independent, world-wide group of Hewlett-Packard
personal programmable calculator users. The officia) Club publication, PPC JOURNAL, formerly 65 NOTES, disseminates
user information related to applications, programs, programming techniques, problems, hardware Inovatfons, - any
information related to the selection, care, use, and application of Hewlett-Packard Personal Programmable Calculstors.

Copyright © ppc 1978

PPC

PUBLICATION

BETTER PROGRAMMING
ON THE HP-67/97

EDITED BY: William Kolb (265)
John Kennedy (918)
Richard Nelson (1)

This Publication is available to members only.

PREFACE

This book is a publication of PPC. It is written by,
and for PPC members. It is notavailable to non-PPC
members. PPC exists because even though programming
is an individual, personal activity, programmers need
to share their experiences. Additionally, the tre-
mendous amount of time required to assemble even a
modest library of programs requires that programmers
exchange their work to avoid continual "re-inventing
of the wheel." This book is a small attempt to
assemble in one reference a few of the many program-
ming techniques developed for the HP-67/97. While
the supply lasts, and it should last until long

after the HP-67/97 are retired, each new member of
PPC will automatically receive a copy.

This "better Programming" book started out as a for-
malized collection of notes prepared by Bill Kolb,
co-ordinator of the Washington Chapter. Many of the
new chapter members requested help in mastering the
various functions of the HP-67. After many exchanges
between friends and fellow PPC members, Bill pro-
duced -in camera ready form- the first 28 pages of

techniques he called Better Programming on the HP-67/97.

The material following page 32 was added to Bill's
basic work.

For you non-67/97 users, I highly recommend that you
also read and study the material even though you

may use an HP-25,29,33,38,55, or 65. Resist the temp-
tation to ignore material written for another machine.
There are many valuable tips that can be applied to
all HP Following the index on pages 30 thru

32 is "RPN and the Stack" also by Bill Kolb. This
article is applicable to all HP PPC users and it
should provide greater insight into the tremendously
powerful automatic "HP STACK."

The stack concept is used in all PPC's, although
those machines that use a form of algebriac logic
may not use the term stack. I attempt to contrast
RPN with TI's advanced AOStM from ‘'our' point of
view in "AOSE™ vs RPN" Do you understand the dif-
ference? The basic idea is simple, although most
users don't compare the systems by the architectural
differences. Between "RPN and the STACK" and "AQS vs
RPN", you should have a better understanding of why
the HP system of RPN, the automatic stack, and LAST
x are so powerful, expecially the difficult to ex-
plain ease of solving every problem the "same" way.

John Kennedy prepared the article "Data Packing" as
well as some of the routines that finish up the book.
John also contributed his time in preparing the book
for printing.

This book is a small, beginning effort, towards what
might be called a PPC Programming Techniques Handbook.
Ideally this handbook should be written by PPC members,
and published by PPC. The topics to be included should
cover the whole range of tips, techniques, formulas,
tables, routines, and tutorial articles. It should be
a 'readable reference' well indexed and organized.
Adding the articles and routines to Bill's material

PAGE 2

was a small attempt to illustrate the different types
of material that a future PPC Programming Techniques
Handbook could contain. One of the goals of this
publication is to outline content and encourage mem-
bers to committ to producing such a work. A few topic
jdeas are outlined below:

a. Indirect Addressing Techniques - Articles and
routines to illustrate how this powerful in-
struction works and is applied to such ap-
plications as data input, data output, mul-
tiple indicies, and computed GO TO's.

b. Searching Techniques - Articles and routines
to search registers for information, Table
look-up, and compression of data into a form
that is encoded for storage and decoded for
output.

c. Sorting - Even with limited data storage,
sorting is a real problem that should be
discussed in PPC terms. Methods should be
flow charted and plotted with run time vs
number and type of data given.

d. Curve Fitting - A1l types of curves, the
Tearning curve, the five 'standards', etc.
should be discussed with equations and ap-
plication provided.

e. Program Segment Sequence - Techniques with -w

ilTustrated examples should be covered.
Almost every ‘'average' program can be
'resequenced’ to save steps or execution
time.

f. Register Rotation - is a useful idea that
should be explained. Often program steps
can be saved by processing data in a set of
registers, rotating the registers and re-
peating the process loop as required.

g. Convenience practices is a good topic for
experienced programmers to write about. Use
of ENTER, and R/S in data entry/correction,
and the selection of logical key sequences
for speed, convenience, standardization, and
easy remembering.

h. Multifunction keys for getting more user de-
finable keys for data entry. Having 30 or
more inputs is possible with the right use of
the user definable keys. Other techniques'
include the use of the function keys them-
selves as input/prefix keys.

i. Routines - Basic calculator functions not
implemented by firmware, clever use of firm-
ware functions for other uses, etc. could
be accomplished with an efficient routine.
Examples appear in this book. The Handbook,
however, should have a version for all machines.

j. Extended Precision - Techniques for reducing/ -

BETTER PROGRAMMING ON THE HP-67/97

predicting errors in extended precision pro-
grams. Equations and methods of computing
all mathematical functions to greater accu-
racy or for extended input ranges.

k. Constants - The common constants used in all
fields. Tables of extended precision values
for use in checking programs. Conversions,
and other useful 'numbers' given for refer-
ence.

1. Machine Conversions - Programconversion from
one machine to another can be full of putfalls
for the novice. Precedures, or guidelines
for converting programs from one machine to
another, Considerations for converting pro-
grams from other sources should also be in-
cluded.

m. Timing - The execution times for all instru-
ctions for all machines should be tabulated
as Bill has done for the HP-67.

n. References - Books, and other publications that
provide information usefull to programmers.
Books on numerical methods, handbooks, math-
ematical dictionaries, text books, journal
articles, etc. are all candidates for the ref-
erence section. Reviews, summaries, and re-
comendations for their use by members is most
desirable.

0. Error Traps - Calculator useage that results
in errors can be subtle enough to trap the user
into thinking his answers are accurate. Methods
and techniques that discuss the proper use of
calculator form an accuracy viewpoint should
be a part of the PPC Programming Techniques
Handbook.

p. Machine Anomalies - Unusual machine behavior
or unsupported features that enhance the use of
the machine. Examples are NNN's, use of program
steps to control display appearance, etc.

q. Hardware Modifications - Changes to HP PPC's
that improve performance or increase user con-
venience. Adding a card write defeat switch
or phase one interrupt switch are examples.

r. Accessories - Home made or modified commerical
items that aid the programmer in accomplishing
his programming task or making his using the
calculator easier. Proven, quality commerical
accessories available could also be included.

s. Software Hardware - Mechanical aids such as
marking pens, flow charting templets, etc. are
"hardware" items that make documentation of
programs easier.

These topics are only a few examples of subject areas
that should be in the Handbook. The PPC Programming
Techniques Handbook should save the programmer time.
Equations should be solved for all variables and
given in "calculator solution" format. Many topics
are often obvious and trivial to the proficient pro-
grammer, but the form of the information can make a
difference. An example is the missing conditionals

BETTER PROGRAMMING ON THE HP-67/97

that Bill gives at the top of page 12. All the in-
formation is there, but the tables below present

the same information in a "different"” form. The pro-
ficient programmer recognizes that the so ca]]eq in-
verse logic (the f-! HP-65 function) is the logical
negation of the do if true conditional. Adding this
information to the tables makes them complete.

Logic HOW IMPLEMENTED
(Inverse
Logic)
Do If Do If Not
True Remarks True Remarks
X=y X=y Keyboard Xty Keyboard
X£y X2y Keyboard X=Y Keyboard
x>y x>y Keyboard X<y Keyboard
X2y XEy Two steps xSy Three steps
x>y required X=y required
f 27 Flag must be
clear when
tested
X<y x3y Three steps | x#y Two steps
X=y required x>y required
f 2?* Flag must be
clear when
tested
xSy xSy Keyboard x>y Keyboard

* Use any flag as long as it is clear when tested.

Table 1. Conditionals for HP-67/97 - X and Y

LOGIC HOW IMPLEMENTED
(Inverse
Logic)
Do If Do If Not
True Remarks True Remarks
x=0 x=0 Keyboard x#0 Keyboard
x#0 x#0 Keyboard x=0 Keyboard
x>0 x>0 Keyboard x#0 Two steps
x<0 required
x20 x#0 Two steps x<0 Keyboard
x>0 required
x<0 x<0 Keyboard x#0 Two steps
x>0 required
xS0 x#0 Two steps x>0 Keyboard
x<0 required

Table 2. Conditionals for HP-67/97 - X and 0

A1l references made herein of the form VnNnPn with
out a specific source applies to "65 NOTES" if V4
or earlier and "PPC JOURNAL" if V5.

I hope you will find this book useful and that your
programming time is reduced with its use.

Happy Programming
Richard Nelson

PAGE 3

CONTENTS

PREFACE o o o v o v v i i s bttt e e e e e e e e e e 2
CONTENTS . . & ¢ v o i o i e et e et e e e e e e e e e e e 4
INTRODUCTION TO BETTER PROGRAMMING. 5
STACK OPERATIONS.« v v v v v v v v e e e e 6
CONSTANTS IN PROGRAMS.« . v o v v v v o v v 7
BUILT IN FUNCTIONS o o v v v v v v v v v 9
REGISTER ARITHMETIC. o o o o v v o v o v 1
INDIRECT REGISTER OPERATIONS « « « - . 11
CONDITIONAL BRANCHING. o o o o v v o v v o 12
FLAG LOGIC . . . o v v v v v v e e e e e e e e e e e e e e 14
COMMON PROBLEMS« o v v v v v v v v e e s 16
MISCELLANEQUS o o v v v v v v v v e e e o e s 19
ROUNDING v v v v v v vt e e v e e e e e e e e 21
GENERAL INFORMATION. ¢ o v v o v v o o o o 22
CARE AND MAINTENANCE« v v i vt e oo oo e e 26
TIMING FOR THE HP-67/97. v o o v v o« o« o o & 27
INDEX . & & o v v e 30
RPN AND THE STACK. . . « « « o v v v v v v o v o e e s 33
AOS VS RPN o v v o v v v e s s e e e e e e e vovos 037
DATA PACKING ¢ o v v v v v v e e v e e e e e e e e s 38

PAGE 4

BETTER PROGRAMMING ON THE HP-67/97

INTRODUCTION

"Better Programming On The HP-67/97" is a collection of tips
and techniques from 65 NOTES, KEYNOTES and "0ld Timers'" that save
steps and speed up your programs. It is intended to help fill the
gap between the Owner's Handbook and good programming. The kind
of information you can expect to find belongs in the following
categories:

1. Time and step saving ideas
2. Commonly used routines
3. General information not covered in the owner's manual

The ideas presented are collected from many sources. Although
many are original, credit belongs largely to all of the ex-beginners
who have contributed to HP KEY NOTES, HP-65 KEY NOTE, 65 NOTES, the
PPC JOURNAL, and the HP Users Club. I have elected not to include
the source of each item since most have been independently dis-
covered by several people. If you see your favorite tip, I'm
thankful for your sharing it; If not, it's because I haven't heard
about it. Your comments and corrections are most welcome.

It is hoped that these pages will help you get more out of
your programmable calculator and provide the right inspiration the
next time you find yourself needing just a few more program steps.

william M. Kolb (265)

34 Laughton Street

Upper Marlboro, Maryland 20870
U.S.A.

Standard HP notation has been used as much as possible through-
out these pages. There are two exceptions to be noted:

1. XY represents the command exchange X and Y

2. Inverse functions are written without the full superscript,
e.g., TAN™ represents TAN~!

BETTER PROGRAMMING ON THE HP-67/97
PAGES

STACK OPERATIONS

XYZT
XYTZ
XZIYT
XZTY
XTYZ
XTZY

YXZT
YXTZ
YZXT
YZTX
YTXZ
YTZX

LXYT
LXTY
ZYXT
ZYTX
ZTXY
ZTYX

TXYZ
TXZY
TYXZ
TYZX
TZXY
TZYX

Initial Order

R+, R+, X~Y, R4, Rt
R+, XY, R4

XnY, R+

R4, XY

XY, R+, R+, XY, R4

XY

X~Y, R+, R+, X~Y, R+, R4
R+, XY, R4, R4

R+

Ry, X~Y, R+

R+, R4, X~Y, Rt

Ry, Ry, XY, Ry

R+, X~Y, R4

XY, Ry, Ry, XnY, Ry
Ry, XaY

R+, R4

X~Y, R+, Rt

R+

Ry, X~Y, Ry, Ry
XY, R4

R+, XY, Ry

R+, R4+, XY

XY, R+, R+, XaY

PAGE 6

BETTER PROGRAMMING ON THE HP-67/97

CONSTANTS IN PROGRAMS

Usual Improved Remarks
Frequently used constants should be stored and
recalled as they are needed. This is true for
short constants such as 2, 5, 0.1, 0.5, etc.,
as well as long constants.

1 EEX Faster; must not be followed by CHS.

1 EEX Faster .

0 1

1 EEX Faster and saves steps when exponent is great-

0 2 er than one.

0

0 CLX Faster; X is lost.

1 m Fewer steps.

8 D<R

0

m EEX

1 D-»R

8

0

4 2 4 /3

m 4

X 0

3 D-»R

LBL A LBL Use one label to store several constants.

STO A STO

RTN R/S

LBL B STO

STO B R/S

RTN STO

LBL. C RTN

STO C

RTN

BETTER PROGRAMMING ON THE HP-67/97
PAGE7

Usual Improved Remarks

LBL A LBL A Use SST to store constants. If the main
STO A STO A program follows the last STO, press R/S
RTN R/S after the last constant is entered.
LBL B STO B
STO B STO C
RTN
LBL C
STO C
RTN
1 EEX Use previous constants to compute new
0 2 constant.
0 STO A
STO A ENTER
2 +
0 STO B
0
STO B
Some constants can be computed in fewer steps
than it takes to enter them. For example,
0.111111111 = 1/9. 0.7777777777 = 1/9 x 7.
Note that in the second example if the compu-
tation is shortened to 7/9, the result will
be 0.7777777778.
The digits O through 9 in reverse order can
be obtained by: 80 : 81.
5 Conversion factor for miles to kilometers;
LN error is less than one in ten thousand.
0 . Use the DECIMAL to enter zero; it's faster.
LBL A LBL A Use SST to store data and begin execution
STO A RTN automatically. The main program must not
STO B STO A contain subroutines or RTN's .
STO C STO B
main GSB n
[prgm] LBL n
STO C

main
prgm

BETTER PROGRAMMING ON THE HP-67/97
PAGE 8

BUILT IN FUNCTIONS

Usual Improved Remarks
XY In general, the built-in functions save steps
+ but not time. The example shows how the
LSTx following equation can be solved in seven steps
R->P assuming X is in the X-register and Y is in the
LSTx Y-register:
e X2 + 2XY + 3Y2

1 EEX

0 %

0

1 EEX

. %

0 +

1

X

. EEX

9 %

9 -

X

ENTER x2 Slightly faster and saves a step; the stack

X is not lifted, however.
R->P Y xZ ¥ y? ; built-in conversion is slower.

2 DSZ Decrement by two and skip on zero.

STO-n DSZ

RCL n GTOm

X=0

GTO m

1 1SZ Iteration or loop count.

STO+n

XY

BETTER PROGRAMMING ON THE HP-67/97

PAGE9

BUILT IN FUNCTIONS (CONT.)

Usual Improved Remarks
STO a I+ Store and recall two numbers. R,, through
XY Rig must be clear. If the technique is
STO b used more than once in a program, follow
. each RCLr with z-.
RCL b RCL =
RCL a
RCL 6 P~S Divide two numbers by the same value; R, and
RCL 9 X Rg are divided by Ry in both methods.
RCL 4
RCL 9
STO+4 T+ Also sums contents of Y-register,
1
STO+9
SIN EEX SIN and CO0S; X-register contains COS and
LSTx R<P Y-register contains SIN. TAN can be obtained
CoS by adding =+ .

RCL = Clear Ry, and Ry .

Z -
2 ENTER Multiply by v2; improved method is slower.
x R»P
X

PAGE 10

BETTER PROGRAMMING ON THE HP-67/97

REGISTER ARITHMETIC

Usual Improved Remarks

RCL n STO+n Faster and saves a step.

+ RCL n

STO n

RCL n RCL n Clear register after use.

0 STO-n

STO n

XY

RCL n RCL n Set register contents to one after use.
1 STO:n Register must not contain a zero.
STO n

XY

INDIRECT REGISTER OPERATIONS

LBL A
RCL n
Xl
Ry
STO (
R+
Xn]
Ry
RTN

Using registers other than I for indirect
storage. The number is stored in the
register pointed to by n. I is restored.

i)

LBL A
RCL n
Xl
RCL(1
XY
Xl
Ry
RTN

Using registers other than I for indirect
recall. The number is recalled from the
register pointed to by n. I is restored.

)

BETTER PROGRAM

MING ON THE HP-67/97

PAGE 11

CONDITIONAL BRANCHING

X=0 X <0
X <0
X=0 X=0
X>0
z Y X=>Y
> Y
X<Y X < Y; Any flag may be used as long as it is
X=Y clear when tested.
F2?
X?Yy Add or subract depending on flag or test.
CHS
+
X?Y Multiply or divide depending on flag or test.
1/X
X
X?y Power or root depending on flag or test.
1/X
yx
X =Y I(x)! or F(x)2 depending on test. I(x) must
I(x) leave X unchanged. Opposite tests are
X =Y required.
F(x)
FO? F(x)2 or G(x)3 depending on flag. G(x) must
F{x) generate LSTx .
G(x)
FO?
LSTx
FO? F(x)2 or H(x)* depending on flag. H(x) must
F(x) have an inverse, H™(x).
H(x)
FO?
H™(x)

PAGE 12

BETTER PROGRAMMING ON THE HP-67/97

CONDITIONAL BRANCHING (CONT.)

I(x) is any keycode that occupies one memory step and does not

change the X-register: STO, STO+, DSP, SCI, RAD, P~S, ENTER, etc.

F(x) is any keycode that occupies one memory step.

G(x) is any keycode that occupies one memory step and produces

a Lstx: LOG. SIN, 1/X, INT, ABS, etc.

H(x) is any keycode that occupies one memory step and has an in-

verse: R4/R¥, I+/i-, LN/eX, COS/COS-, R«P/R+P, DSZ/ISZ, 1/X, X~¥

F3? Skip a step if flag is set. F2 or F3 may

F3? be used.
Additional self-clearing flags can be created
using DSZ, DSZ(i), ISZ, ISZ(i). Set these
"flags" by storing *1 in appropriate registers,

X?y Enter 0 or 1 depending on flag or test.

1

LBL Set or clear flag by entering 0 or 1.

SF1

X=0

CF1

RTN

x?y Add m if true; otherwise leave unchanged.

m m is a single digit entry; RCL will not work.

;

Xy Divide by 10 if true; otherwise leave

. unchanged .

1

X

X?y Divide by 100 if true; otherwise leave

. unchanged .

0

1

X

BETTER PROGRAMMING ON THE HP-67/97
PAGE 13

FLAG LOGIC

The Flag Logic Table can be used whenever it 1s desirable to have
a test which skips (or does not skip) a particular program step depend-
ing on the status of two flags.

The various tests possible are listed at the top of the table
where A and B represent the two flags. A is interpreted as Flag A SET
and A 1iIs interpreted as Flag A NOT SET.

Several solutions are presented for each test; Iinsert one of
these keycode sequences Iimmediately ahead of the program step which is
to be skipped as a result of the test. A and B are shown in parenthes-
es beside the flags they represent in the actual program.

F2 and F3 are self-clearing flags and may be used interchangeably
in all tests. FO0 and F1l1 are also interchangeable wherever they are
used. Any comparison such as X<0, X<Y, etc., can be substituted
directly for FO or Fl1 in a test. This technique is useful since it
avoids the requirement for setting and clearing a flag.

Testing Flag Status

The following procedure will allow the testing of a flag(s) to
determine if it (they) are set or cleared.

*
Press h, RTN . Test flag from keyboard, i.e. press f, F? n. Switch
to W/PRGM. If display shows step 001 instead of 000 flag tested was
clear. Remember that if flags 2 or 3 were set, i.e. display showed
000 when switching to W/PRGM, they were cleared by testing and should
be reset if desired. Flag 3 is set when any digit key is pressed or
a number entered by a program.

* This procedure is recommended to avoid switching back and forth

to W/PRGM. The program pointer will move one step anywhere in pro-
gram memory if the tested flag is clear. Starting at the top of memory
saves one switch movement.

BETTER PROGRAMMING ON THE HP-67/97
PAGE 14

Gl 39DVvd

L6/.9-dH AHL NO ONINIWNVHOD0Hd 431139

NON-SKIP CASE A A RorB |Aand B|Aand B|{AorB |Aand B|AorB |A and B|A or B | (A&B) or (A&B) | (A&) or (ASB)
SKIP CASE R A Aand B{AorB JAorB |AandB|AorB |AandB|AorB |A and B | (A&B) or (A&B) | (AB) or (A&B)
FO (A)YIF3 (A)JFO (A)]FO (A)|F3 (A)]FOo (A)Y|F3 (A){F3 (A)]F3 (A)|F3 (A) FO (A) F2 (A)
F3 F1 (BY|F1 (B)|SF3 F3 (B)|F3 F3 FO (B) | F3 F3 (B) F2
FO (A) CFO F2 (B)|F3 CFO SF3 FO FO (B) F3 F3 (B)
F3 FO (A) [F3 (A)]FO F3 FO FO (B)}FO (B)|F3 F3
FO F3 FO (B) F2 F3 FO (A)
FO F3 F3 (A) FO (A) F3 (A) | SA1 F2 (A)
F3 FO FO (B) | Fo (A)|F1 (B) F3 F1 (B) F3 (B)
F3 CA1 F1 FO (B) F3
CFO F3 (A) F1 (B)| FO F3 FO (A) F2
Fl(A)|F3 CF3 F1(8)
FO FO (B) | FO (A) FO (A) CF3 Fl FO (A)
FO F1 (B) CF1 FO (A)] FO F3 (B)
F3 F1 (B) F1 (B)| FO F3
F2 (A) FO F1 F3
F3 (B) F3 FO (A)
F2 F1 (B)
F3 FO (A)} FO
SF3 F1
FO (A) F3 (B)| F1
F3 (B) F3
SF3 F1 (A)
F3 FO (B)
FO
F1
F1
NORMAL [JINVERTED AND NAND NOR OR EXCLUSIVE OR EQUIVALENCE
Note: F2 and F3 are test cleared flags
FLAG LOGIC

COMMON PROBLEMS

RCL & Law of Cosines: ¢ = v a2 + bZ - 2ab cose
RCL a

R«P

RCL b

R~>P

1+
o,

RCL x Polynomials: ax3 * bx2 + cx
ENTER

ENTER

ENTER

RCL a

X

RCL b

+

X
RCL ¢

+

X
RCL d

+

RCL b Quadratic Equation: -b + V' bZ - 4ac
RCL a 2a

ENTER
+

éHS The second root may be found by adding the
ENTER following steps: XoY, LSTx, +

X2

RCL ¢

RCL a

VX

+

RCL a Square-root of Sum of Squares:
RCL b

R+P v a? + b2 + ¢Z + d2
RCL ¢

R->P

RCL d

R->P

BETTER PROGRAMMING ON THE HP-67/97
PAGE 16

COMMON PROBLEMS (CONT.)

SIN

cos” YT = xZ 3 =1<X <+

TAN

SIN™ X/ V1T = xZ 3 -1<X<+]

TAN

€oS™ YT -xZ /x5 =1 <X <+l

N

TAN™ 1/ /7T +xZ; -1 <X <+

SIN

TAN™ X/ /1T +xZ; -1 <X <+

R+»P
R+

RCL y ARCTAN; avoids division by zero and
RCL x distinguishes between (-y)/x and y/(-x).

x2 1+2+3+

x2 12 + 22 + 32+ ..

.+ X2

BETTER PROGRAMMING ON THE HP-67/97

PAGE 17

COMMON PROBLEMS (CONT.)

x2 13 +23+33 4+, .. +X3
LSTx
+
2
%2
X~ Y z Remainder of Y divided by X. Improved
ENTER LSTx method is not as accurate when Y is large
ENTER XY compared to X. DSP setting will also
R4+ FRAC affect results.
+ X
LSTx RND
XY
INT
X
ENTER RCL a Remainder of X divided by a constant, "a".
ENTER s
RCL a FRAC
* RCL a
INT X
RCL a RND
X
RCL A vAZ + 2B2
RCL B
R-P
LSTx
R-»P
RCL a Find the Targest of three numbers; the
RCL b routine is easily extended to four or
X>Y more numbers. You can find the smallest
XY of three numbers by substituting X<Y for
RCL ¢ X>Y.
X>Y
XY

PAGE 18

BETTER PROGRAMMING ON THE HP-67/97

MISCELLANEOUS

Usual Improved Remarks
SIN Keeps angles less than 90 degrees.
SIN-
COS Keeps angles less than 180 degrees.
C0Ss~
RCL o Keeps vector (r) positive.
RCL r
R<«P
R-»P
2 : ENTER Doubles the X-register; improved method
X + is faster. LSTx will be different.
RCL 1 RCL a Keeping two indexes.
STO b X~
RCL a STO b
STO 1
SPACE LBL x NOP; x is any unused label. Program will

be compatible with the HP-67 as well as the
HP-97. If labels can't be spared, use DEG

or DSP corresponding to the mode the calcu-
lator is in.

EEX VX Introduce a small error in X; does not work
9 x2 if X is a perfect square. See TAN on p 20
CHS for typical application

+

RCL a RCL a

RCL b RCL b aP/2

2 y*

3 Vx

yx

y* CHS Faster.

1/X yx

EEX EEX Saves a step.

6 6

CHS :

X

BETTER PROGRAMMING ON THE HP-67/97
PAGE 19

MISCELLANEQUS (CONT.)

Usual Improved Remarks

h RAD TAN +90 degrees. Prevents overflow at

D»R multiples of £90.

TAN

h DEG

X TAN +90 degrees. Prevents overflow at

x2 multiples of +90 .

TAN

GTO n Generates an error message in the program;

3 n is any unused label.

h BST RUN Cancels prefix key when pressed by mistake
SST W/PRGM in the program mode .
h DEL W/PRGM Cancels prefix key when pressed by mistake
RUN in the run mode.
a Stores five numbers in the stack and LSTx.
g Assumes y=0, or x+y = desired number for "a".
ENTER
c
ENTER
d
ENTER
e
9 Generates largest number. A somewhat slower
9 method which saves two steps is: 7,0, N!
EEX 70! = 1 sec
9 99! =~ 1.4 sec
9
NOP You can create a NOP keycode on the HP-67 by

switching to the W/PRGM mode and pressing GTO,
DECIMAL, 2, then A and D simultaneously. A

32 24 should appear in the display. This in-
struction executes in 7 msec. making it the
fastest NOP available.

BETTER PROGRAMMING ON THE HP-67/97
PAGE 20

+ g

MISCELLANEOUS (CONT.)

1 EEX Faster and saves a step.
ENTER EEX

ENTER RCL n

RCLn

RCL © Supplement of an angle (8 + Supplement & = 180)
1 -0 < f < 4w .

CHS

R«P

R-»P

XY

CHS

X?y Divide by 10 if true; multiply by 10 if
false .

O —t

ROUNDING

ENTER Rounds both positive and negative numbers.

FRAC

+

INT

RND Eliminates display of 60 minutes and 60
H< seconds. Also reduces 60+ minutes and

H.MS<« seconds to a value less than 60. Mostly
used in DSP2 and DSP4 mode .

BETTER PROGRAMMING ON THE HP-67/97
PAGE 21

GENERAL INFORMATION

Use the stack to simplify computations (cf. Poly-
nomials and Quadratic Equation under COMMON PROBLEMS).

Use LSTx to save registers whenever possible.

Conserve registers by reusing them when the data is
perishable .

More than one number can be stored in a single register.
Two five-digit numbers, for example, can be stored as
the INT and FRAC parts of a register,

In programs with a large number of iterations, look for
ways to use the previous calculations in order to save
steps. Refer to the TIMING tables and pick keycodes
that will save time.

Avoid the use of X < Y and X > Y whenever possible to
reduce execution time.

When using comparisons, the most probable event should
test true to reduce execution time.

Speed up programs by avoiding the use of subroutines as
much as possible.

Keep labels as close to the call as possible.

Labels can be used more than once in a program. The
first occurrence of the label after its call will be
used .

Figure out a logical output sequence and structure the
program to print in this order. It will help the next
time you use the program.

When writing a family of programs or programs that use
identical routines, keep the routines exactly the same
and use the same labels. Use the same registers for the
same purpose in each program.

BETTER PROGRAMMING ON THE HP-67/97
PAGE 22

GENERAL INFORMATION (CONT.)

Debugging programs is easier if R/S is used through-
out at logical checkpoints. Once debugged, the R/S
keycodes are easily deleted.

Document any tricks or exotic routines or no one,
including yourself, will understand the program six
months later.

When inserting or deleting steps from a program,
begin with the highest step number and work backwards.

Use an AM radio near the calculator to tell when a
long program has finished .

Magnetic cards can be marked with a PENTEL P335 film
marking pencil. It is non-smearing, erasable and
convenient to carry .

Cards can be permanently marked with the SANFORD
No. 3000 SHARPIE soft-tipped pen .

Cards which have been protected by clipping the corner
can be re-recorded. Prepare a magnetic card as shown
using a 45 degree cut. Insert this card in the left
side of the calculator as far as it will go. Switch
the calculator to W/PRGM or W/DATA and enter the
"protected" card in the normal fashion.

N

Uneven printing on the HP-97 is usually due to deposits
on the print-bar which holds the paper against the
print head. Slide the plastic window straight up and
out. Use a wooden toothpick to gently rub any build-
up from the print-bar. Solvents are not necessary.

BETTER PROGRAMMING ON THE HP-67/97
PAGE 23

GENERAL INFORMATION (CONT.)

Darker printing can be obtained by removing the plastic
window on the printer. Slide it straight up and out.

Rockwell and Texas Instruments thermal paper can be
substituted for HP Thermal Paper. Be sure to check
the width since it comes in different sizes. TI paper
usually gives better contrast than the HP paper.

The plastic window on the HP-97 printer obscures one
line of print when listing the stack. This can be
fixed by sliding the window out and filing off the 1ip.
Polish the edge smooth using polishing compound and
emery cloth. Toothpaste can be substituted for polish-
ing compound.

N

STOCK
MODIFIED

\ N

Extraneous steps in memory after the end of your program
will slow execution. An easy way to delete these steps
is to prepare a special "blank" card. Clear memory and
enter a zero in step 224. Record this program. To
delete unused steps in your program, go to the last pro-
gram step, switch to the RUN mode, press MERGE, and
enter the blank card.

f LBL x is preferred over LBL x to reduce execution
time. Use LBL A, LBL B, etc., only when you have used
all LBL a, LBL b, LBL c, etc.

When print commands are used within an iterative loop,
keep as many program steps as possible between print
statements. This will help reduce execution time since
the program must halt for the printer whenever more
than one output is queued up.

Always handle magnetic cards by the edges to avoid
finger-prints on the magnetic surface.

PAGE 24

BETTER PROGRAMMING ON THE HP-67/97

GENERAL INFORMATION (CONT.)

The prefix key can be canceled on the HP-97
by simply depressing DSZ. This must not be
followed by (i) however.

—

Always use multiplication instead of division

0 1 whenever possible to save execution time
3 X
XY XY Use the stack as much as possible to save
+ + execution time. The seven step solution
LSTx LSTx requires 2204 msec. while the nine step solu-
R->P x2 tion requires only 465 msec. {almost five
LSTx ENTER times faster. The example is from p.9.
R-P + 2 2
2 XY X< + 2XY + 3Y

x2

+

BETTER PROGRAMMING ON THE HP-67/97

PAGE 25

CARE AND MAINTENANCE

Preserve battery power when the calculator is in use
by pressing the decimal key. Use CLX to resume.

The charger may be connected or disconnected from the
calculator while it is still running. Be sure that
the charger is first plugged into an AC outlet and
that the power is on.

Obtain maximum battery 1ife by operating the calculator
until the low-battery indicator comes on before re-
charging .

Calculators should not be left on charge for more than
fourteen to sixteen hours.

Batteries should not be discharged further once the low
battery indicator comes on.

When batteries are not used for extended periods, they
should be recharged every 30 to 45 days.

You can avoid accidentally running the batteries down
by placing the battery pack upside down in the calcula-
tor with the metal contacts facing out .

When using the HP-67 (or HP-65) for extended periods on
AC, a transient spike protector will provide extra in-
surance against logic damage due to fluctuations in the
line voltage. Use GENERAL ELECTRIC GESP-752.

When replacing the HP-67 in its case, the display should
face away from the inside pocket.

Never touch the display with your fingers. Fingerprints
can be removed with a Q-TIP using a light rubbing action
in one direction only. Moisten the plastic first by
breathing on it.

Remove minor scratches from the display using a soft
cloth or Q-TIP and MIRROR GLAZE PLASTIC CLEANER MGH 17.
For deeper scratches, use MICRO MESH SCRATCH REMOVER
KIT.

PAGE 26

BETTER PROGRAMMING ON THE HP-67/97

TIMING FOR THE HP-67/97

Instruction Typical Time(msec) Instruction Typical Time (msec)
ENTER 32 STO n 35
EEX 48 RCL n 37
CHS 37 STO (i) 901
CLX 30 RCL (i) 100!
Digit Entry 72 per digit

STO + n 702
R4+ 33 STO - n 702
Ry 33 STO x n 1002
Xn Y 34 STO = n 1302
X~ i 35 STO + (i) 1151
PnS 91 STO - (i) 1281
LSTx 35 STO x (i) 1301

STO = (i) 1781
+ 502
- 502 DSZ 60
X 1072 1SZ 60
2 1222 DSZ (4) 171

ISZ (1) 1171
SF 40
CF 40 INT 45
F? 36 (set) FRAC 50
F? 43 (clear) RND 65 (FIX)

64 (SCI)
131 (ENG)

X=20 39 (F) 33 (T)
X=z0 39 (F) 33 (T) LBL A 28
X>0 39 (F) 33 (T) LBL n 28
X<0 40 (F) 34 (T) LBL a 32

BETTER PROGRAMMING ON THE HP-67/97

PAGE 27

Instruction Typical Time (msec) Instruction Typical Time (msec)
X =Y 39 (F) 34 (T) GTO (i) 110!
X =Y 39 (F) 34 (T) GTO A> 1603
X > Y 68 (F) 61 (T) LBL A
X<y 69 (F) 62 (T) GSB A} 2403
LBL A
RTN
T+ 350
z- 290 LN 530"
RCL 32 ex 340"
DSP n 40 LOG 620"
DEG 30 10™ 320
RAD 30 x2 90
X 120"
1/x 130
Yy 6504 PAUSE 1250
ABS 32 w 42
REG 28000
D<R 180
DR 240 % 100
He 80 2% 150
H.MS« 50 H.MS+ 150
N! 320
SIN 930 (D) 770 (R)"
SIN™ 850 (D) 760 (R)“ DECIMAL 42
oS 960 (D) 780 (R)“
oS~ 850 (D) 760 (R)*
TAN 670 (D) 500 (R)“
TAN™ 590 (D) 500 (R)“
R<P 1050 (D) 920 (R)“
R+P 980 (D) 920 (R)“

BETTER PROGRAMMING ON THE HP-67/97
PAGE 28

Execution time increases as the value of (i) increases. The typical
variation was plus 40% to minus 35% from the value given in the
table. An exception was GTO (i) where the variation was only plus
15 msec. to minus 3 msec. about the mean value given.

Operations with +, -, x, and % varied plus or minus 16% about the
mean value given depending on the sign and magnitude of the
arqguments.

Execution times for these instructions were dependent on the location
in memory as well as the number of steps between the label and the
call. The minumum and maximum times measured for GTO A . . . LBL A
were 101 msec. and 218 msec.

Transcendental functions had the greatest variation. Depending on
the size of the argument(s), execution times ranged between +50%
of the typical value given.

Typical times presented in this table are used to compare relative
speed advantages of alternative routines. The actual speed will be
dependent on the particular arguments used. The times shown will
also vary depending on the speed of your calculator. You can cali-
brate your calculator by loading the program memory with (+). Fill
the stack with 1's and press R/S. The count at the end of one min-
ute should be 1175. Divide the count you actually obtained by 1175
to obtain a correction factor for the times given.

BETTER PROGRAMMING ON THE HP-67/97

PAGE 29

ANGLES
keeping less than 90. . . . 19
keeping Tess than 180 . . . 19
supplement of 21
ARCTANGENT.17
AUDIBLE ALARM 23
BATTERIES
care of 26
charging. 26
discharge 26
increasing life 26
preventing accidental
discharge . . 26
BUILT IN FUNCTIONS, use of 9 10
CANCELING PREFIXES19,25
CARE and MAINTENANCE 26
CASE, Carrying 26
CLEAVINu e e e e e e e 26
CHARGER, connect1ng with
ca]cu]ator on « « « « « . . 26
CLEARING PREFIXES19,25
COSINES, Law of 16
COS and SIN10
COMPARISONS, also see Con-
ditionals and Flag Logic
finding largest number . . 18
finding smallest number . . 18
speed considerations . . . 22
X<O0 12
) 12
XY . . 00000 0., . .12
X<Y 000, .12
CONDITIONAL BRANCHING, a)so
see Comparisons and Flag
Logic
add or NOP 13
add or subtract 12
divide by 10 or NOP 13
divide by 100 or NOP . . .13
F(x) or G(x). 12

CONDITIONAL BRANCHING (cont.)

multiply or divide.12,21
power or root 12
Zero or one < . . 13
CONSTANTS IN PROGRAMS
computing 8
storing
using labels 8
using SST 8
with automatic run. 8
A 7,8
L 7
10 &« ¢ v v v v v e . 7
1800 7
/1807
4%/3 . .7
0. 987654321 R . 8
9.999999999 E 99 20
COUNTERS . 9
DEBUGGING PROGRAMS23
DECREMENT BY TWO'S 9
DELETING PREFIXES 19,25
DELETING STEPS 23,24
DISPLAY
cleaning« . . . 26
removing scratches 26
DIVIDE BY 1009
DIVIDING TWO NUMBERS
SIMULTANEOUSLY . .10
DOCUMENTING PROGRAMS23
DOUBLING A NUMBER19
EEX IN LIEU OF ONE .7,21
ERRORS
creating error messages . . .20
generating small errors . . .19
EXECUTION TIMES, also see . 27-29

Time

FLAGS, also see Comparisons and

Conditional Branching
extra self-clearing .

13

BETTER PROGRAMMING ON THE HP-67/97

PAGE 30

INDEX
FLAGS (cont.) RADIO, use as an alarm23
logic table 14-15 REGISTERS 11
set or clear routine . . . 13 arithmetic A
skip if true 13 clearing Ry, and Ry22
testing two flags . . . 14-15 conserving 11
indirect store11
H.MS, rounding 21 indirect recall19
HYPOTENUSE 9 keeping two indexes10
recalling two22
ITERATION COUNTER 9 reuse of 11
INDEXES, keeping two 19 reset to 1 afteruse11
INDIRECT ADDRESSING, also . . 11 self-clearing . .
see Registers stor1ng two or more numbers
INSERTING PROGRAM STEPS . . . 23 in a single register . ., .22
use of LSTx in lieu of. . 20,22
LABELS REMAINDERS, computing18
reuse of . . . 22 ROUNDING
speed considerations . 22 24 HHMS21
use in storing numbers . 7,8 positive and negat1ve numbers 21
LOOP COUNTER 9 ROOTS
LSTx AS A REGISTER . . . 20,22 of X . .. e I
sum of squares 9,16,18
MAGNETIC CARDS b/2 19
defeating write protect . . 23 Tttt e
fingerprints % SINAND COS10
marking 23
MULTIPLY BY 0.99 g SQUARE ROOT . . . -19
MULTIPLY BY 1‘01 """ 9 SQUARE ROOT OF SUM SQUARESQ 16,18
. BEBESET STACK
MULTIPLY BY 2
MULTIPLY BY v210 2$;E¥?2?;29c6méut1ng' SRR '22
MULTIPLY V3. DIVIDE25 speed considerations.25
STORING TWO NUMBERS10
NOP v 19,20 SUBROUTINES, increasing speed .22
POLYNOMIALS 16 U 17
PRINTER, also see Thermal Paper INLEGErS v e 9 16]7 18
modifying the window. . . .24 z&g:ges R 15
cbtalning darker print. . - 2% SUPPLEMENTARY ANGLES . . | [(2]
uneven pr1nt1ng coe23 TAN 20
PYTHAGOREAN THEOREM 9 TAN-L T T 17
QUADRATIC EQUATION16 TEMPORARY STORAGE USING LSTx .20

BETTER PROGRAMMING ON THE HP-67/97
PAGE 31

INDEX

THERMAL PAPER

obtaining darker print |

substituting
uneven print
TIME

eliminating unused code.

instruction execution

multiply vs. divide. . . .
speeding up programs . . .
subroutine execution . . .
when using printer

TRANSIENT PROTECTION FOR HP-67
. 24 TRIGNOMETRIC RELATIONS26
.. 24 17
.. 23 VECTORS, keeping a positive
magnitude 19
. 24 VOLTAGE TRANSIENTS 26

PAGE 32

BETTER PROGRAMMING ON THE HP-67/97

RPN AND THE STACK

oR

HOW TO TALK TO YOUR CALCULATOR

We are accustomed to writing mathematical expressions
such as the sum of A and B with the aid of general
symbols (usually an English or Greek letter) and
operators such as +, -, x and . The notation A+B,
which represents the sum of A and B, is called infix
notation because the operator + is in-between the

two operands. This convention has been in popular
use since the development of algebraic symbolism in
the 17th century.

The Polish mathematician, Lukasiewicz, developed an-
other type of notation around 1951 for sequential cal-
culus called prefix notation. In prefix notation, the
operator precedes the two operands and our sum is
represented as +AB. This is often referred to as
Polish notation in honor of Lukasiewicz.

Reverse Polish Notation (RPN), as you might expect, is
written with the operator following its operands. 1In
RPN, or suffix notation, the sum becomes AB+. It is
worth pointing out that this notation is parenthesis
free, since parentheses are not required to indicate
the order in which the operations are to be performed.
For example, Ax(B+C) becomes ABC+x while (AxB)+C be-
comes ABxC+.

RPN is an ideal convention for computers because it
presents the entire mathematical expression in a way
which is easily compiled. RPN is therefore almost
universally used to compile statements presented in
infix or algebraic notation.

The method of compiling is to scan the expression from
left to right, placing the operators and operands in a
"push-down" 1ist depending on the precedence of the
operators and the parentheses. An operation which
must be delayed because of imbedded parentheses

causes the stack to be pushed down. A close-paren-
thesis, on the other hand, causes the 1ist to "pop-
up." This last-in-first-out philosophy is why you

may have heard that computers execute a statement from
right to left. Notice that the parentheses themselves
are not stored in the 1ist. They merely signal the
next action to be taken.

With the HP calculator, you are the "compiler" and you
decide when the list is to be "pushed-down" or "popped-
up." Fortunately the simplicity of RPN and the sophis-
tication of the calculator require you to learn only
four easy-to-remember steps. The only bad thing is
that the terminology is somewhat reversed from what
we've been using. Instead of a push-down list, we

have a stack which is raised or lifted when data is
entered. And instead of popping-up when an operation
is performed, the stack contents drop. A flow diagram
nicely illustrates the rules that are followed in or-
der to evaluate most expressions with this system.

BETTER PROGRAMMING ON THE HP-67/97

START
]
ENTER NEXT
NUMBER
CAN AN DO ALL
PRESS OPERATION BE POSSIBLE
ENTER PERFORMED yes OPERATIONS
Figure 1. Procedure for Evaluating Expressions in RPN.

The advantages of this system are several fold:

1. Each problem is consistently solved the same
way, without regard to complex hierarchy rules
or parentheses.

2. You see every intermediate answer so that you
can check your progress.

3. You can easily recover from an error since no
more than one operation is performed at a time.
4. Intermediate results need not be stored or

written down since the stack automatically
lifts or drops as required.

Of course there is a 1imit to the complexity of prob-
lems which can be solved entirely within the stack.
The limitation is that the stack holds no more than
four numbers at one time. Thus, there can be no more
than three pending operations which would cause the
stack to drop. Such operations, which involve two
operands, are called "diadic" and consist of +, -, x,
+and certain special functions. An unlimited number
of single operand or "monadic" operators such as LOG,
COS, ABS and FRAC can be pending since these do not
cause the stack to drop.

It is interesting to note that even calculators with
parentheses treat monadic functions the same way.

In order to evaluate COS(A+B), for example, you first
add A and B, then take the C0S. If this sounds like
RPN, you can see why it might be an advantage to

solve every problem the same way. With RPN, the opera-
tion is executed as soon as the function key is pressed.
There are no exceptions.

PAGE 33

The stack in HP calculators is organized as four tandem
registers lettered X, Y, Z and T (see Figure 2). When
you key in a number, it goes into the X-register which
is the only one displayed. When you press ENTER, a
copy of the number in X is transferred to Y. Simul-
taneously, the number in Y is transferred to Z, and

Z into T. The original number in T is lost. At this
point, the "stack-1ift" feature of the calculator is
disabled SO that the next number keyed in writes over

X without causing another sequence of transfers.

Diadic operators always use the operands in the X and
Y registers. The result of the operation is placed
in X, while Z drops down to Y, and T drops to Z. The
T-register is not cleared as you might expect. In-
stead, T replicates itself any time the stack drops.

Three commands are programmed into the calculator which
permit the stack to be reorganized. These are:

1. R+ (roll-up) which causes the contents of each
register to be moved up one, with the number in
T rotated to X.

2. Ry {roll-down) which causes the contents of each
register to move down one, with the number in X
rotated into T.

3. X%Y (exchange) which causes the number in X to
be switched with the number in Y.

= T - REGISTER
& r
&
- Z - REGISTER v
<)
2 A \ -
+ <
P] 1 &~
2 58
= ~5
~ Y - REGISTER S
@] ©c o~
IS et
& 1 A r:
= \ g
f s [.
} [h)
W +
i X - DISPLAY =
ol

N

LAST X

Figure 2. Stack Concept for RPN

These features are useful for reviewing the stack con-
tents and for rearranging the operands into any desired
order. Exchange is particularly useful in this regard
since the order of the operands in the stack at any
given time may be different from what is required for
subtraction, division, exponentiation and certain

PAGE 34

special functions such as R*P, Z+, and %. Rearranging
the stack is not always easy, however, and sometimes
requires as many as six separate commands, e.g. chang-
ing XYZT to YXTZ

The CLX and LSTx keys are also connected with stack
operations. CLX is used to clear an error by replac-
ing the contents of X, the display register, with
zero and disabling the stack-1ift so that the next
entry will write over the zero. It is also a useful
way to enter a zero into the stack.

LSTx is a special register that temporarily preserves
the number in X when any monadic or diadic operation is
executed in the stack. A command such as STO+5, how-
ever, does not operate on X and Y in the stack and
therefore does not affect the LAST X register. A simple
way to remember when LSTx is affected is that any arith-
metic operation which changes the stack contents, also
changes LSTx.

Since the calculator automatically raises and drops
the stack, we must anticipate the correct response
every time if we are to use it efficiently. There

are only three cases to consider: 1) operations that
enable the stack-1ift, 2) operations that disable the
stack-1ift, and 3) operations that have no affect on
the stack. Since the first category comprises most
operations on the calculator, it is easier to remenber
the operations in the other two categories and recall
the first by exception. In order to determine what
effect a given key will have on the stack, we must
know the status of the stack-1ift mechanism. Whenever
the 1ift is disabled, a data entry will write over the
current contents of the display.

There are only four operations to remember which dis-
able the stack-1ift: CLX, ENTER, I+ and Z-. A number
keyed inorrecalled immediately after one of these
operations writes over the number in X and does not
1ift the stack. Note that the stack-1ift is only
disabled for a single step and the next key will en-
able the 1ift unless it's also one of the four.

It is generally safe to assume that a number keyed in
after any other operation will 1ift the stack. There
are nine instructions to remember, however, that do not
affect the stack contents even though a number is keyed
in. These are FIX, SCI, ENG, DSP, STO, EEX, O

through 9, DECIMAL, and CHS (when followed by a decimal,
EEX or 0-9). Each of these instrucitons are used for
inputting or displaying numbers in the X-register. Even
though the stack is not lifted by these instructions,
the stack-1ift remains enabled.

An interesting feature of the calculator worth mention-
ing is the use of EEX to enter a number. EEX is nor-
mally used to format the exponent field and, like

the digits 0-9, does not raise the stack when pre-
ceded by 0-9. When it is not preceded by 0-9, how-
ever, a one is assumed in the mantissa and the stack is
lifted. This is the only key besides ENTER and RCL
which can be used to fill the stack directly.

A few words are also in order with regard to the ENTER
key. The primary function of ENTER is to tell the
calculator Togic where one number begins and another
ends in a string of digits being input. A secondary
feature is that it can be used to raise a number in
the stack without having to reenter each digit again.

BETTER PROGRAMMING ON THE HP-67/97

-w

-

It may seem inconsistent at first that ENTER 1ifts the
stack and at the same time disables the stack-1ift.
This need not be confusing if you always distinguish
between a key's primary function and its secondary
affect on the status of the stack-1lift.

Normally, you should only be concerned with the stack-
1ift status after using ENTER, CLX, £+ or I - when enter-

ing or recalling a number does not produce the usual 1ift.

These stack-1ift basics must be mastered for all but the
most routine calculations. In many cases, solving prob-
lems entirely within the stack is fastest in terms of
execution time. Some extra effort at organizing data
entry and the order of calculation is therefore worth-
while. There are certain situations, however, which
prevent a stack solution, viz. when one or more vari-
ables are used repeatedly in the calculation, and

when there are more than three pending diadic opera-
tions. In either case, try factoring the expression
before programming. Sometimes expanding the factors
and recombining terms will lead to a shorter solution.
Next, try to order the sequence of calculation to take
advantage of LSTx. The self-replicating feature of T
may be used for temporary storage as well as a method
for having more than three pending operations. Fail-
ing this, you would resort to STO and RCL. Remember
that each STO adds an extra step when compared to

LSTx. Using the T-register may also require extra
steps in order to rearrange the stack. Don't forget
that register arithmetic is another way to reduce the
number of pending diadic operations.

There are no shortcuts for minimizing the number of
steps required, so use the approach that seems most
comfortable. It is usually a good idea to begin with
the most complicated part of the expression or the
inner-most set of parentheses. Bear in mind that this
is the same approach you would use when solving the
problem by hand. When it is absolutely necessary to
make a program shorter, practice and perseverance are
your best assets. Also remember that the shortest
solution is not always the fastest and speed should be
your primary concern in programs that loop many times.

It has been siad that the best study of programming is
programming. With this philosophy in mind, we shall
explore several ways that the stack can be used to
evaluate an expression. The problem selected for this
purpose is: 2 2
X + 2xy + 3y

We will assume in each case that x is in the X-reg-
ister and y is in the Y-register at the start. It is
a good idea for the beginner to write out the contents
of the stack at every step so we will follow this
procedure also. This will familiarize you with stack
operations and help you remember where things are in
the stack at any point in the program. The same
technique is also helpful for the experienced program-
mer when trying to reduce the number of steps and in
debugging complicated programs.

In our first solution, we will solve the problem as it
is written using storage registers. This will hope-
fully give us some insight into other ways the problem
could be solved.

BETTER PROGRAMMING ON THE HP-67/97

STACK CONTENTS STACK
KEY ENTRY LAST X | LIFT
X Y& DIS. *
001 STO A X y - - - NO
002 XY y X - - - NO
003 STO B y X - - - NO
004 x? y? X - - y NO
005 3 3 y? X - Yy NO
006 x 3y? X - - 3 NO~
007 RCL A X 3y2 X - 3 NO
008 RCL B y X 3y x 3 NO
009 «x Xy 3y? X X y NO
010 2 2 Xy 3y? x y NO
011 «x 2xy 3y? X X 2 NO
012 + 2xy+3y? X x x| 2xy NO
013 RCL A X 2xy+3y? | x x| 2xy NO
014 x? X 2xy+3y2 | x «x X NO
015 + x2+2xy+3y? X X X x?2 NO
Execution Time: 960 msec. * DISABLED

Now we should try factoring the expression to avoid the
use of storage registers. Rewriting the formula using
the associative and distributive laws of algebra
produces:

2(x+y) +y)y

(((x+y) + (x+y) + YY)y

X X X X X
o+ o+ o+

(
(2x+2y+y)y
(

X

While this may look more complicated, it suggests a way
to use the T-register to hold x? and LSTx to hold y. A
program that does this might be written as follows:

STACK CONTENTS ! STACK

KEY ENTRY X y 7 T LAST X B%gT*
001 ENTER X X y - - YES
002 ENTER X X X y - YES
003 x X X y y X NO
004 R+ X y y x| x NO
005 + x+y y x2 | x3 x NO

006 ENTER x+y x+y y xI x YES
007 + 2{x+y) y x2 | x2| x+y NO
008 X~¥Y y 2{x+y) x2 | x3| x+y NO
009 + 2x+3y x? x2 | x?| y NO
010 LSTx y 2x+3y x2 | x*} oy NO
011 «x 2xy+3y? x? x2 2xy+3y?| NO
012 + x2+2xy+3y x? x2 | x%|2xy+3y?3 NO

* DISABLED

Execution Time: 612 msec.

Encouraged by saving three steps and one-third of a
second, we renew our attack on the problem. We notice
that another set of factors can be obtained by setting
apart 2y2:

x? + 2xy + 3y?

X% + 2xy + y? +2y?
(x+y)? + 2y*
(x+y)? + (2y)y

Now we don't have to worry about storing x and LSTx can
be used as before to temporarily store y.

PAGE 35

STACK CONTENTS STACK
KEY ENTRY LAST X |LIFT
!) : T DIS.*
001 X~ y X - - - NO
003 + 2y X - _ y NO
005 x 212 X - - y NO
006 XY X T T =y No
007 LSTx y X 2y2 - y NO
008 x+y 2y? - -y NO
009 x* (x v)* 2y> | - | -| xy | NO
010 + X2+2xy+3y? - - -1 (x+y)2| NO
Execution Time: 517 msec. * DISABLED

Two more steps and one-tenth of a second are saved

by this approach. Anyone expounding the law of dimin-
ising returns will quit at this point and get on with
the number crunching. A few individuals {notably those
who have one step too many in their program, those who
can't sleep will until its perfect, and authors of ar-
ticles such as this) will be persuaded to have yet
another try. At this point, the experienced programmer
recognizes that he's got about all the mileage pos-
sible from factoring and it's a choice of doing things
in a slightly different order or of finding a new ap-
proach altogether. Using the previous results, we try
factoring 2y? another way:

x2 + 2xy + 3y?
= (x+y)? + 2y*
= (xty)?2 +y* +y?
STACK CONTENTS STACK
KEY ENTRY LAST X LIFT
X Y Z 17 DIS. *
001 XwY y X - |- - NO
002 + Xty - - 1~ y NO
003 LSTx y Xty - |- y NO
004 x? y? Xty - |- y NO
005 ENTER y? Yy x+y | - y YES
006 + 2y? x+ - |- y? NO
007 XY x+y 2y - |- y? NO
008 «x2 (x+y)? 2y? - |- X+y NO
009 + x2+2xy+3y?| - - | -] (x+y)3 NO
* DISABLED
Execution Time: 465 msec.

Our best efforts have shaved-off one more step and re-
duced the execution time by a mere 50 miliseconds.
The number-crunchers probably feel vindicated. Mean-
while, the insomniacs have come up with a seven step
solution that requires about 2,200 milliseconds to
execute. But before you get carried away and attempt
to duplicate this "feat," you had best make sure you
have a firm grasp of stack basics. When you can com-
plete the missing steps in the following program,

you will be well on the way to mastering RPN and the
stack W.M. KOLB (265)

Now that you are familiar with RPN, try using the
techniques described to solve the following problems
and compare your solutions with the ones given.

PAGE 36

STACK CONTENTS STACK
KEY ENTRY AST X |LIFT
X Y Z|T DIS.*
o X y - |- - NO
002 x? y - X NO
003 y x? - - X NO
004 y x2 - 1- X NO
005 y y x?| - X YES
006 y y y | x3 X YES
007 x+y y y | X3 X NO
008 x+2y y x? | x4 xty NO
009 RCL 1 x+y x+2y y | X3 x+y NO
010 2x+3y y x2 | xq 2x+3y NO
on 2xy+3y? x2 x2 | x4 2x+3y| NO
012 x2+2xy+3y? x? x2 | x¥ 2xy+3y3 NO
* DISABLED

EXERCISE: Fill in the Missing Key Entries

RPN PRACTICE PROBLEMS

2 1w 29.96
1.4/ 5 {([[o.z ngggg) +1] - 1} e

=

|

o o] ol oo

M-1 T
TE{30| & + 2T + 22T
(]'5)] M nM

SOLUTIONS TO RPN PRACTICE PROBLEMS

1. Indicated air speed to MACH number. Start with the

inner-most parentheses and work outwards. Storage
registers are not required. (29 Steps)

400 X * 15 1

ENTER 1 y T -

661.5 + 1 1 5

+ 1.4 - + X

x? ENTER 29.96 0.286 w

0.2 4 X yX

2. Expand and recombine factors to obtain 2(a-b)/(1-b?);
use LSTx to store b temporarily. (11 Steps)

BETTER PROGRAMMING ON THE HP-67/97

a 1 +
ENTER LSTx 2
b x? X

3. Sum of geometric series. Use LSTx to store r.

(13 Steps)
1 1 - X
ENTER LSTx XY
r n +
- yx a

4. Amount of periodic payment. Use LSTx to store the
interest. Remember that EEX can be used to enter
the one and does Qot disable the stack 1ift. Also
note that (CHS, y”) was used instead of (yX, 1/X)
because it's slightly faster and the HP-80 does
not have the reciprocal function. (13 Steps)

P EEX n +
ENTER EEX CQS

i LSTx Yy

X + -

Factor out common

130+20(M-1)3 {n+4+0.47) + T(2+ i_ﬁ)

5. Cost of a satellite program.
terms to get:

Use storage registers and register arithmetic.

(26 Steps) The Problem can be solved in 30
steps using only one register.
T ST0 3 RCL 2 + RCL 1
STO 1 0.4 1 X +
STO+1 X - RCL 3
M n 20 22
STO 2 ST0+3 X X
+ + 30 +

AOS VS RPN

A0S is a Trade mark of Texas Instruments and all
references to AOS refers to Texas Instruments'
trade mark.

The first scientific calculator was the HP-35,
announced in January 1972. The HP-35 utilized a
four leval stack and Reverse Polish Notation, RPN.
Much later when Texas Instruments entered the market
place they advertised what they called AOS , or
Algebriac Operating System. The first PPC, the HP-65
was introduced in January 1974. 1It, like all HP
consumer calculators, used RPN. In September 1975
T.I. announced the SR-52 which used an advanced AQS
system. The SR-52 A0S 1is what is in common use
today and the term advanced has been dropped.

Prior to advanced AOS it was common practice to
compare the two systems in terms of keystroke ef-
ficiency. RPN won hands down, and when advanced
A0S came along, the differences shrunk to "minor
differences."

In terms of keystroke efficiency, recent published
work, and official statements by T.I. software
managers have laid the keystroke efficiency ques-
tion to rest. John Ball, in his book "Algorithms

For RPN Calculators", shows the numerical differences
in keystorkes between RPN and AQS for over 250 basic
operations involving four variables. When the key-
stroke count is compared RPN uses 8% fewer keystrokes
on the average. This, coupled with T.I.'s admission
that RPN is more efficient in keys pressed to solve
problems, should remove this aspect from system
comparisons. For all practical purposes both systems
are nearly equal with RPN having a slight edge.

A calculator must have adequate information to know
when data entry is complete, what operations to
perform, and in what sequence. To separate two
numbers the machine must know when the digit entry is
terminated. On RPN machines, number termination is
done with the pressing a function, a stack operation
or ENTER key. See your owner's handbook for details.
On A0S machines it is primarily the function keys

BETTER PROGRAMMING ON THE HP-67/97

that terminate digit entry. It is the method of
determining the sequence of operatjons that makes
the primary difference between AQS and RPN,

In the TI system, the operation is appended to the
number when it is placed in the stack. In the
HP RPN system, only numbers are placed in the stack.

A.0.S. - Operations appended to numbers in stack .
RPN - Only numbers are stored in the stack.

Now you know the difference. There is more, but the
fundamental difference is the stack and how it
operates.

Before we go into more detail let's agree on termi-
nology. "AOS vs RPN System" would have been a more
accurate title for this discussion, but since most
writers imply, whether they realize it or not, that
when they talk about RPN they mean HP's RPN system;
i.e. automatic stack, full stack control, and Last x.
The question often asked is : Which is best? Ask
an AOS user and he will say A0S is best, ask an RPN
user and he will say RPN is best. Ask either user
to_iw;tch systems, and they would rather fight than
switch.

At the risk of being called what ever technically
minded people call those they dispise when they are
angry, 1 will answer the question. The best system

to use will depend on the application, and the type of
person who is going to use it. I will explain, but
before we start classifying users and applications,
let's review some more fundamentals.

This is not intended to be a calculator architecture
primer, but we must mutually understand a few more
terms: Parenthesis and Pending Operations. When
you compare specific machines it is a lot Tlike
comparing trucks. You obviously can get more furniture
in a truck with a ten foot bed than one with a four
foot bed. The truck with the four foot bed may be
stronger or faster, but its capacity to hold fur-
niture is obviously less. The stack on all HP per-
sonal calculators has four registers. The stack on
A0S machines typically ranges from five to ten.
The numbers that can be held in the stack for later
use determine the number of pending operations the
machine can hold. A1l HP personal calculators can

PAGE 37

hold three pending operations. Two AOS machines
will be used to illustrate TI's A0S philosophy,
the TI-30 and the TI-59. The table below gives the

data.

MODELS | PENDING OPERATIONS | PARENTHESIS | STACK
Any HP 3 0 4
TI-30 4 15 5
TI1-52/59 9 9 10
Table 1. RPN and A0S stacks compared

On HP machines the stack is automatic and because the
user supplies the order of operations, parenthesis
are not needed. From a mathematics point of view
most users know what a parenthesis is, and why they
are used. A left parenthesis following a +, -, x,

+ raises the stack. A right parenthesis or = drops
or collapses the stack. One consideration to always
keep in mind when comparing machines is to compare
equal stacks. Just 1ike it is unfair to compare HP's
four high stack with Nationals NOVUS machines with a
three high stack, it is likewise unfair to compare

TI machines with five or ten high stacks with HP's
four high stack.

One of the disadvantages of TI's AOS is the need for
remembering which operations are performed first,

and how many parenthesis you have opened and where.
There is a certain amount of memory work inherent in
any complex problem, but the stack concept of loca-
tions, or compartments where data are located, is
easier for most people who will spend a few minutes
getting use to HP's RPN concept. The locations,
or registers used in the RPN system are independent
of any problem data. They are always there, and the
user simply puts numbers in and performs operations
on them, and takes them out. There are a few "rules"
to remember which AOS proponents will argue are just
as complex as the hierarchy rules, but I don't agree.
It is easier for a non-mathematics person to follow
the rules of raising the stack, replicating T into
Z,x2y, etc. because these can be visualized as
physical operations of the four locations that com-
prise the stack. The most complex operation to keep
straight is that the y register is acted upon by the
x register. The value of x is added to y, the value
of x is taken away from y, etc.

Once the operation of the stack is mastered the

user no longer thinks about operations, he thinks
about his data and what he wants to do with it. Th
ability to dynamically move the data freely gives a
freedom of problem solving that can only be appreciat-
ed when the user has had problem solving experience

on an actual machine. The operations appended to the
data in the AQS stack can be very restrictive.

The strong argument given for A0S is the natural
"key as you read” operation. This is valid. A0S
calculators solve problems very will, they are
straight forward, and for routine, well written
equations, they are easy for most people to pick up
and use. Let the problems get complex, and changing
as in many real 1ife situations, and the rigid

stack of the A0S system becomes an anchor around the
users neck as he attempts to keep up with verbal and
changing real world problems. The AOS proponents
will still argue that the do it as you see it approach

PAGE 38

is simpler. It is obvious, however, that even TI re-
cognizes that the user gets confused with parenthesis,
otherwise why are there more parenthesis than pending
operations on machines such as the TI-30? The idea
appears to be, if in doubt, use parenthesis, and the
machine will take care of keeping track of pending
operations. Catering to this need only reinforces the
confusion that users often have as to what is the best
way to key up a problem. While many AOS machines warn
the user when he has exceeded his limit of paren-
thesis or pending operations, most users really don't
understand all the hierarchy logic built into their
machine.

The left to right keying in of the problem is another
argument, or point of discussion, that is invalid

if the two machines, i.e. systems, being compared
have equal stacks. Both can solve the problem keying
in left to right.

With the above brief comparison of the stacks of

the two systems the answer to the question of which
system is best, is obvious. If the user intends on
solving straight forward problems, and he doesn't
have the patience, inclination, or ability to learn
an easier, more flexablesystem, then he should be
happy with a AOS machine. For all other users, RPN
is so far superior, more convenient to use, and just
plain easier in terms of mental "work" that there

can be no question as to what is the better system.

This comparison is necessarily incomplete, and was only
intended to open the door for a hetter understanding

of the basic differences of AOS and RPN. The ques-
tion of which is 'best' in programming or the real
world ability of both the SR-52 and TI-59 to mani-
pulate their stacks through unsupported "functions”,

or specific examples of the "dynamic" real 1ife flex-
ability of HP's RPN system were not covered because

of space. Perhaps these topics can be continued in
future PPC Journal articles.

DATA PACKING

This article will describe three methods
to expand your calculator's memory capacity

under software control. Since all three
methods involve stuffing exlsting data reg-
isters with more information than usual,
these techniques fall under the general head-
ing described as data packing.

The first technique 1s decimal point en-
coding. The idea 1s a natural one; use the
decimal point to separate two numbers and use
the INT/FRAC functions to unpack the numbers.
It is possible to store two 5-diglt integers,
or three 3-digit integers, or ten 1-digit
integers, or other combinations. William
Kolb (265) packed five 2-digit integers in a
register in his program for sampling wlthout
replacerent. See VSN1P5 for an excellent
1llustration of this technlque.

Mike Louder (329) used logarithmic encod-
ing on the HP-35, This technique allows you
to store two scientific numbers (including
exvonents) in one register. This 1s accom-

-

BETTER PROGRAMMING ON THE HP-67/97

plished by taking the log of each number,
shifting the decimal point, then rounding the
result to a 5-digit integer. Two S-digit
integers are then stored using the decimal
point encoding technique described above.

To recall the numbers take the antilog of
each 5-digit integer and keep track of the
decimal point.

The major drawback to this type of encod-
ing 1s accuracy. The log and antilog func-
tions are sensitive to the most significant
digits, but the error is introduced when the
log 1s rounded to 5 digits. Taking the anti-
log only gives you back an approximation of
the original number. However, in many scien-
tific applications fewer than 5 significant
digits are needed and if you know ahead of
time the range of numbers involved the idea
of logarithmic encoding can be a useful one.

Along these same lines Mike Richter (235€)
discussed using the exponent for multiple
storage in VAN6P24. If 1€x<9 then INT part
of log(x) 1s the exponent. Mike also men-
tions using the sign bit positions as extra
flags. These are also fine examples of
multiple storage techniques.

Decimal Point Encoding/Decodinz Routines

By substituting R(1) for Rl below, any of the
rezlsters RO-R19 may be emrployed. n=number
of digits per integer to be stored. (n=1,2,3,
4,5). The position numbers start with 1 and
count up to INT(10/n). =
INSTRUCTIONS:

Store 10" in BB before usinzg these routines,

To recall the number from position k,
key In k and oress A.

To store an n-digit integer j in position k,

kxey 3 ENTER®kx and vress E.
Recall posltion ki | Store J in position k:
31 25 11[f LBL A] 31 25 15 (£ LBL E]
34 12 RCL B 31 22 11 £ GSB A
35 52 h x%y 35 52 h x2y
35 63 h yX 34 12 RCL B
35 €4 h ABS 81 +
34 01 RCL 1 71 X
35 R2 h LsT x 33 51 01 3T0 - 1
81 <+ 35 82 nh LSTx
32 83 g FRAC 35 s4 h R
34 12 RCL B 71 X
71 X 33 A1 01 STO + 1
31 83 £ INT 35 22 h RIN
35 22 h RTN
EXAMPLES :

Store three 3-digit integers. n=3

Pirst store 1000 in RB.

Key 539 ENTERY 1 and press E.

Key 637 ENTER% 2 and press E.

Key 1 ENTERY 3 and press E.

The 3 positions should now be filled.
R1=41£37589, Key in any position number 1-3
and press A to check.

BETTER PROGRAMMING ON THE HP-67/97

Store five 2-digit integers. n=2

First store 100 in RB.

Key 17 ENTERY 1 and press E,

Key 22 ENTER} 2 and press E,

Key 53 ENTERY 3 and press E.

Key 86 ENTER} 4 and press E.

Key 94 ZINTER} 5 and press E,

The 5 posltions should now be filled.
B1=9486532217. Xey in any position number
1-5 and press A to check,

In V3N9P11 Jacob Jacobs (99) published his
technlique for obtaining 30 flags in one reg-
lster. This is a superb example of data paclk
ing and Jacobs indicated he invented this
technique to remember 74 game moves in his
Hexpawn game. He also indicated the tech-
nlque could be used for other games such as
Bingo, Xeno, or dealing cards.

The original idea behind Jake's Flags was
to consider a 10-digit integer as a long
string of O0's & 1's. This of course is the
form the integer would take if written in
binary (base 2) form. However, it 1s not
requlired to convert the entire numrber into
binary form. #lthough we may see a 10-digit
Integer, it 1s how we think of the number
being represented that is important. If
Jake's Flags are numbered 0-29 within a reg-
ister 1t is not necessary to serially decode
all 30 positlons to find or test the particu-
lar flag we want. The only input required to
either set, clear, or test a particular flag
1s the positlon number of the flag within the
register. The most compact routines for this
binary encoding technique are given below.

HP-67 JAKE'S FLAGS 30 FLAGS IN ONE REGISTER

The following 3 routines assume Rl contains
the flag set. The 30 flags are numbered 0-29
incluslve. In testing flag k, if the result
1s 0 then flag k 1s clear, and if the result
1s 0.5 then flag k is set. 0<k<29, For each
routine below key in k and then press the
appropriate user defined key.

Test Flag ks Clear Flag ki Set Flag ki

LBL A f LBL C f LBL E

2 f GSEB A f GSb A

h xzy £ x=0 f x#£0

h yX h RIN h RTN

h ABS h x2zy h xzy

RCL 1 STO - 1 3TO + 1

h LST x h BTN h RTN

£ INT

2

% FRAC

h RTN

What 1s significant is that the position
number of a flag really acts as an address
for the flag, Because a flag 1s just an on-
off switch with limited output it is diffi-
cult to think of a flag as a rmemory location.
But when you combine the position number idea
as an address tozether with a base represen-
tation other than base 2 that such an artifi-

PAGE 39

cial memory blossoms into one which ls capa-
ble of holding more than simple on-off infor-
matlion.

For example, to deal cards choose base b=
52. Because the 5th power of 52 approaches
the maximum integer storage capabllity in an
HP-67 data register it 1s possible to have
only 5 artificial memories per HP-67 registen
Think of each HP-67 register as being made up
of §5 artificial memories. The powers of 52
serve as the position numbers or the artifi-
c¢ial addresses which are numbered 0-4. The
coefficients on these powers of 52 hold the
contents of each artificial memory repre-
sented by the boxes below.

[]se* [] 523+ []s2% []se’+ [] s2°

Now any integer which is stored in an HP-67
data register can be thought of as filling
the boxes with 5 integers from 0-51 inclu-
sive. Again, what 1s important is how we
think of the number being represented, not
the actual number we see. For example, when
274297969 is written in base 52 form we haves

[37] s2*+ [26] 527+ [w1] 522+ [z8] 521+ [wg] 52°
In thils form we can clearly see the numbers
in the § artificlial memories and it is a
simple matter to extract the contents of any

such memory location. To store a new number
in box #2, say 17, we would simply subtract

41.522 from 274297969 (this places 0 in box
#2) and then add 17-522 to that result.

BASE b ENCODING/DECODING ROUTINES

By substituting R(1) for Rl below, any of the
registers RO-R19 may be employed. As wilth
Jake's PFPlags, the position numbers start with
0 and count up to some maximum limit.

INSTRUCTIONS:

Store the base b in RB before using the
routines below.

To recall the number from position k,
key in k and press A.

To store an integer J (08)sb-1) in position k
key k ENTER* J and press E.

Recall position ki Store § in position ki
31 25 11 [f LBL A] 31 25 15 [f LBL E]
34 12 RCL B 33 11 STO A
35 52 h x2y 35 52 h x3y
35 €3 h yX 31 22 11 £ GSB A

35 A4 n ABS 71 X
34 01 RCL 1 33 51 01 STO - 1
35 82 h LSTx 35 52 h x2y
81 = 34 11 RCL A
31 83 £ INT 71T X
35 82 h L3Tx 33 €1 01 STO + 1
34 12 RCL B 35 22 h RTN
81 =~
31 83 f INT
3% 12 RCL B
71 X
51 -
35 22 h RIN

EXANPLE:

Key up these routines and let's check the
previous example with the 5 boxed positions.

First store 52 in RB.

Key O ENTER? 49 and press E.

Key 1 ENTER4 28 and press E.

Key 2 ENTERY 41 and press E.

Key 3 ENTER% 26 and press E.

Key 4 ENTER4 37 and press E.

The 5 poslitions should now be filled. RCL 1
to check if 274297969 1s stored there. Now

key in any position number 0-4 and press A.
You should see the contents as you stored
them. Now to store 17 in the 2nd position
key 2 ENTERT 17 and press E. Then key 2
and press A to check that 17 was properly
stored.

It should be emphasized that although the
data must be in integer form, applicatlons
are not restricted to integers. The output
from a card dealing routine could be of the
form p.q where p is an integer between 1 &
13 which represents the card value and q 1is
an integer between 1 & 4 which represents the
card suit. Thus 11.4 would be interpreted as
a Jack of Spades, but this card would be
stored as an integer, say 49. A short rou-
tine breaks 49 down into the two numbers 11 &
4, (Reduce 49 mod(13)). A salesman could
store a large table of prices. Each price
(a decimal) would then have to be decod
from some integer value.

The table below summarizes the possible
configurations for expanding the HP-67 memory
capacity using base b encoding.

The table represents the worst case pos-
sibllities. In many applications it will be
possible to extend the values in the table.

TABLE OF HP-67 EXTENDED MEMORY CAPACITY
USING GENERALIZED JAKZ'S FLAGS
BA3E b ENCODING

Number of Total Data
Lot postion FOESEY, | sasel 2722,
Per HP-67 Using Integers
Register RO-R19 Only
30 0-29 600 2 0-1
19 0-18 380 3 0-2
15 0-14 300 L 0-3
13 0-12 260 5 o-4
11 0-10 220 7 0-6
10 0-9 200 10 0-9
8 0-7 160 14 0-13
7 0-6 140 21 0-20
6 0-5 120 37 0-36
5 0-4 100 100 0-99
4 0-3 80 2151 0-214
3 0-2 60 1414] 0-1413
2 0-1 ko 1D5] 0-99999

PAGE 40

John Kennedy (918}

-

BETTER PROGRAMMING ON THE HP-67/97

