General Operations

We will store these constants in R_1 and R_2 . Solution:

Press	See Displayed		
DSP • 4	0.0000	Set display.	
3.7854 STO 1	3.7854	Stores liters/gallons conversion constant in R ₁ .	
2.54 STO 2	2.5400	Stores centimeters/inch conversion constant in R ₂ .	
3.6 RCL 1 X	13.6274	Capacity of tank 1 in liters.	
13.5 RCL 2 X	34.2900	Height of tank 1 in centimeters.	
5.5 RCL 1 X	20.8197	Capacity of tank 2 in liters.	
20.9 RCL 2 X	53.0860	Height of tank 2 in centimeters.	
11.3 RCL 1 X	42.7750	Capacity of tank 3 in liters.	
32.8 RCL 2 X	83.3120	Height of tank 3 in centimeters.	
DSP • 2	83.31	Resets display.	

Choosing Addressable Registers

Except for the case of registers $R_{\rm s}$ and $R_{\rm p}$, it is immaterial which registers you use.

 R_s is the special object of the **9** DSZ operation (presented in section 4), which uses it as a descending counter (index) in program applications. R_s should be avoided for other uses when R_s is used in your programs.

 $R_{\scriptscriptstyle 0}$ is subject to alteration by the trigonometric functions, rectangular/polar conversions, and the relational tests (used in programs). The trigonometric functions and rectangular/polar conversions use $R_{\scriptscriptstyle 0}$ for intermediate calculations. When executing a relational test, $R_{\scriptscriptstyle 0}$ serves as a Last X register. At other times $R_{\scriptscriptstyle 0}$ is available for your use.

Calculating in Addressable Registers

Thus far, all calculations have involved the X-register or the X-and Y-registers to produce a result in X. In the case of addressable register arithmetic, the result is left in the addressable register and the number in X is unchanged.

Subtraction.	To subtract the number in X from r_n , press:	STO - n
Addition.	To add the number in X to r_n , press:	STO + n
Multiplication.	To multiply the number in X by r_n , press:	STO X n
Division.	To divide the number in X into r_n , press:	STO ÷ n

For example, store 6 in register R₁ and then increment it by 2.

Press	See Displayed	
6 STO 1	6.00	Stores 6 in R ₁ .
2 STO + 1	2.00	Adds 2 to r_1 .
RCL 1	8.00	Confirms that r ₁ equals 8.

Now, subtract 5 from the contents of R_1 .

5 STO - 1	5.00	
RCL 1	3.00	Confirms that r_1 has been reduced to 3.

Finally, multiply the remaining contents of R₁ by 2:

